Loading
Journal of Cellular Signaling
ISSN: 2692-0638
Ethanol Consumption and Sepsis: Mechanisms of Organ Damage
Sepsis is highly prevalent, and is one of the main causes of mortality among hospitalized patients. Ethanol consumption in large quantities compromises the normal functioning of the body, leading to dysfunction of multiple different organ systems. The association between sepsis and ethanol is not fully understood, but it is well accepted that ethanol
J Cell Signal, 2021, Volume 2, Issue 4, p235-241 | DOI: 10.33696/Signaling.2.056Hydrogen Peroxide-induced Cell Death in Mammalian Cells
Hydrogen peroxide (H2O2) is an important intra- and extra-cellular signaling molecule that can determine cell fate. At low concentrations, H2O2 plays roles in proliferation, immunity, and metabolism. Cellular exposure to higher non-physiologic concentrations of H2O2 can result in oxidative stress.
J Cell Signal, 2021, Volume 2, Issue 3, p206-211 | DOI: 10.33696/Signaling.2.052NH2-Terminal Cleavage of Cardiac Troponin I Signals Adaptive Response to Cardiac Stressors
Cardiac sarcomeres express a variant of troponin I (cTnI) that contains a unique N-terminal extension of ~30 amino acids with regulatory phosphorylation sites. The extension is important in the control of myofilament response to Ca2+, which contributes to the neuro-humoral regulation of the dynamics of cardiac contraction and relaxation.
J Cell Signal, 2021, Volume 2, Issue 3, p162-171 | DOI: 10.33696/Signaling.2.048APE1/Ref-1 – One Target with Multiple Indications: Emerging Aspects and New Directions
In the realm of DNA repair, base excision repair (BER) protein, APE1/Ref-1 (Apurinic/Apyrimidinic Endonuclease 1/Redox Effector - 1, also called APE1) has been studied for decades. However, over the past decade, APE1 has been established as a key player in reduction-oxidation (redox) signaling. In the review by Caston et al. (The multifunctional APE1 DNA repair-redox signaling protein as a drug target in human disease), multiple roles of APE1 in cancer and other diseases are summarized.
J Cell Signal, 2021, Volume 2, Issue 3, p151-161 | DOI: 10.33696/Signaling.2.047Wnt Signaling Cascades and Their Role in Coronary Artery Health and Disease
The Wnt signaling is classified as two distinct pathways of canonical Wnt/β-catenin signaling, and the non-canonical pathways of planar cell polarity and Wnt/Ca2+ pathways. However, the scientific discoveries in recent years have shown that canonical and noncanonical Wnts pathways are intertwined and have complex interaction with other major signaling pathways such as hedgehog, Hippo and TOR signaling.
J Cell Signal, 2021, Volume 2, Issue 1, p52-62 | DOI: 10.33696/Signaling.2.035Improving Obesity and Insulin Resistance by Targeting Skeletal Muscle MKP-1
Obesity has reached a global epidemic and it predisposes to the development of insulin resistance, type 2 diabetes and related metabolic diseases. Current interventions against obesity and/or type 2 diabetes such as calorie restriction, exercise, genetic manipulations or established pharmacological treatments have not been successful for many patients with obesity and/or type 2 diabetes.
J Cell Signal, 2020, Volume 1, Issue 4, p160-168 | DOI: 10.33696/Signaling.1.025Dendorbium Nobile Lindl. Alkaloids Suppress NF-κB and NLRP3 Signaling Pathways to Attenuate Lipopolysaccharide-induced Neuroinflammation
The important immune cells in the brain are called microglia acting as the central junction between neuroinflammation and neurodegenerative diseases. In patients of cognitive disorders and Alzheimer’s disease (AD) animal models, amoebic morphology and inflammatory pathways are activated to release numerous cells in the inflammatory factors by active microglia.
J Cell Signal, 2020, Volume 1, Issue 4, p102-114 | DOI: 10.33696/Signaling.1.019Is Citrate A Critical Signal in Immunity and Inflammation?
When immune cells are activated, they undergo metabolic change in order to have sufficient energy to function effectively. The Krebs cycle is one of the most important pathways involved in this response and citrate, a critical component of this pathway, regulates carbohydrate and lipid metabolism.
J Cell Signal, 2020, Volume 1, Issue 3 | DOI: 10.33696/Signaling.1.017Role of Sphingolipid Signaling in Glomerular Diseases: Focus on DKD and FSGS
Being a sophisticated and highly organized living system, mammals harbor a large number of biomolecular machineries which represent a dynamic and complex network of interconnections responsible for the effective operation, development and survivability of their body cells. Sphingolipids are a special class of lipids in eukaryotic cells, which have recently gained the attention of researchers because of their involvement in several fundamental processes of living cells, including proliferation
J Cell Signal, 2020, Volume 1, Issue 3, p56-69 | DOI: 10.33696/Signaling.1.013The Effect of Glucocorticoids on Angiogenesis in the Treatment of Solid Tumors
Glucocorticoids (GCs) are defined by their role in maintaining glucose homeostasis and natural GCs are a class of corticosteroids secreted by the adrenal cortex. Cortisol is the most important natural GC in humans. Cellular cortisol levels are regulated by the tissue-specific metabolic enzymes 11β-hydroxysteroid dehydrogenase 1 and 2 (11β-HSD 1 and 2); 11β-HSD 1 converts inactive cortisone to active cortisol, while 11β-HSD 2 has the opposite function.
J Cell Signal, 2020, Volume 1, Issue 3, p42-49 | DOI: 10.33696/Signaling.1.011Prospective Evaluation of Effect of Metformin on Activation of AMP-activated Protein Kinase (AMPK) and Disease Control in a Sub-group Analysis of Patients with GI Malignancies
Observational studies have demonstrated association of metformin with reduced cancer incidence and mortality in multiple cancer types, including gastrointestinal (GI) malignancies. Anti-neoplastic effects of metformin are believed through many mechanisms including activation of AMP-activated protein kinase, which controls mammalian target of rapamycin (mTOR) growth regulatory pathway.
J Cell Signal, 2020, Volume 1, Issue 2, p35-41 | DOI: 10.33696/Signaling.1.008Scientific Archives is a global publisher initiated with the mission of ensuring equal opportunity for accessing science to research community all over the world. Spreading research findings with great relevance to all channels without any barrier is our goal. We want to overcome the challenges of Open Access with ensured quality and transparency.