Role of PI3K/Akt/GSK-3 Pathway in Emesis and Potential New Antiemetics

Zhong W, Darmani NA*

Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 East Second Street, Pomona, CA 91766, USA

*Correspondence should be addressed to Nissar A. Darmani; ndarmani@westernu.edu

Received date: August 24, 2020, Accepted date: September 18, 2020

Keywords: Chemotherapy, Emesis, Ca2+, Emetic nuclei, PI3K, Akt, GSK-3

Nausea and vomiting are protective defense mechanisms by which vomit competent species avoid ingestion of potentially toxic substances. More specifically, vomiting is the act of forceful expulsion of gastrointestinal contents through the mouth, whereas nausea is an unpleasant painless subjective feeling that one will imminently vomit. Severe or chronic vomiting can become detrimental due to significant loss of fluid and ion imbalance. The act of vomiting is usually preceded by retching, where the gastrointestinal tract contents are forced into the esophagus, without the vomitus being expelled [1]. While significant knowledge exists on the neurotransmitter and anatomical basis of vomiting [2-4], nausea is the neglected symptom and its anatomical neurochemistry remains to be fully defined.

The major emetic sites involved in the process of vomiting include: i) the brainstem dorsal vagal complex (DVC) containing the central emetic nuclei such as the area postrema (AP), nucleus tractus solitarius (NTS) and dorsal motor nucleus of the vagus (DMNX); and ii) the peripheral emetic loci such as neurons of the enteric nervous system (ENS) and enterochromaffin cells (EC cells), as well as vagal afferents carrying input from the gastrointestinal tract (GIT) to the brainstem DVC [5,6]. Cisplatin-like cancer chemotherapeutics cause vomiting via release of multiple neurotransmitters [e.g. dopamine, serotonin (5-HT), substance P, etc] from the EC cells and/or the brainstem [7]. In the past, non-specific emetogens such as copper sulfate or cisplatin were often used to determine the antiemetic potential of drugs in relatively large animal models of vomiting including dogs, cats, or ferrets [8]. Recently, more specific emetogens are frequently used in emesis research using smaller vomit-competent-species such as least shrews (Cryptotis parva) [9] or house musk shrews (Suncus murinus) [10]. Such receptor-selective or non-selective specific emetogens include agonists of serotonin type 3 (5-HT₃R) (e.g. 2-Methyl-5-HT or 5-HT₃), substance P neurokinin type 1 (NK₁R) (e.g. GR73632), dopamine D₂ (D₂R) (e.g. quinpirole or apomorphine), and muscarinic 1 (M₁R) (McN-A-343 or pilocarpine)-receptors, as well as Ca²⁺ channel regulators comprising the L-type Ca²⁺ channel (LTCC) agonist FPL64176 [11], and the sarco/endoplasmic reticulum Ca²⁺-ATPase (SERCA) inhibitor thapsigargin [12]. Based on our Ca²⁺-dependent emesis hypothesis [9], we have demonstrated the broad-spectrum antiemetic nature of two of the selective LTCC inhibitors, nifedipine and amlodipine, against the above discussed diverse emetogens [11-13].

In this laboratory we have focused on investigating intracellular emetic signals evoked by the above discussed specific emetogens. Indeed, our recent findings have well established that ERK1/2 is a common emetic signal in the mediation of vomiting elicited by intraperitoneal administration of diverse emetogens [12,14-18]. Moreover, our group has demonstrated a time-dependent upregulation of phosphorylation of protein kinase B (Akt) downstream of phosphoinositide 3-kinase (PI3K) signaling in the least shrew brainstem following administration of either the selective LTCC agonist FPL64176 [19] or the emetic NK₁R agonist GR73632 [14]. Following PI3K activation, phosphatidylinositol (3,4,5)-trisphosphate (PIP₃) accumulates at the cell membrane which then leads to the recruitment of Akt to the plasma membrane where Akt is phosphorylated at Thr308 together with Ser473 which ensures full Akt activation [20,21]. Multiple cellular experiments have shown that the PI3K inhibitor LY-294002 can inhibit the
The PI3K/Akt pathway hyperactivation occurs in several types of cancers and inhibitors targeting this pathway are under development as potential armamentarium for cancer treatment which have been extensively reviewed [23,24]. When treating cancer patients with PI3K/Akt pathway inhibitors, nausea and vomiting are among their common impending side-effects [25]. Indeed, GSK2636771, the potent, orally bioavailable, adenosine triphosphate-competitive and selective inhibitor of PI3Kβ, not only causes dose-dependent nausea (40%) and vomiting (31%) in cancer patients, but also reduces the phospho/total Akt ratio [26]. In our one of our current animal studies, we observed that a larger dose of the PI3K-Akt inhibitor LY-294002 (40 mg/kg., i.p.) caused vomiting in up to 71% of tested shrews, whereas its lower dose (20 mg/kg) has limited emetic potential. Such anti/proemetic effect with small versus larger doses of other antiemetics, such as the selective 5-HT₃ receptor antagonist tropisetron, has also been observed against GR73632-evoked NK₁R-mediated emesis [14]. However, the role of Akt in the evoked vomiting appears to be complex and is under continued investigation. Indeed, our recent unpublished findings indicate that PI3K/Akt pathway inhibitors are potent emetogens in the least shrews when administered systematically, which we further discuss in the following paragraph.

Based on the essential role of intracellular Ca²⁺ mobilization in the process of vomiting evoked by diverse emetogens [9], we evaluated the antiemetic potential of the LTCC blocker nifedipine against MK-2206- and perifosine-induced vomiting. Nifedipine provided potent and total (100%) protection against the vomiting caused by both Akt inhibitors perifosine (50 mg/kg, i.p.) and MK-2206 (10 mg/kg, i.p.). At this dose nifedipine could only partially protect shrews from vomiting evoked by the above discussed diverse emetogens, including that caused by LTCC activator FPL64176 [11]. Thus, Akt inhibitor-evoked emesis is highly sensitive to the LTCC blocker nifedipine, and extracellular Ca²⁺ entry through LTCCs plays a major role in both perifosine- and MK-2206-induced emesis. Our preliminary results support the involvement of serotoninergic 5-HT₃Rs, neurokinin NK₁Rs and dopamine D₂Rs in vomiting evoked by the Akt inhibitor MK-2206. In fact, according to the antiemetic efficacy profiles of the selective 5-HT₃ receptor antagonist palonosetron, NK₁R antagonist netupitant, and the selective D₂ receptor antagonist sulpiride, we propose that release of emetic neurotransmitters serotonin, substance P and dopamine are involved in MK-2206-evoked emesis. Further studies are to be performed in our laboratory to address their underlying mechanisms.

A downstream target protein for Akt signaling pathway, glycogen synthase kinase-3 (GSK-3), is a constitutively active protein involved in diverse physiological processes including metabolism, cell cycle, and gene expression [33-38]. GSK-3 is also involved in a wide range of pathologies such as diabetes, inflammation, some types of cancer, neurodegeneration and mental illness [39]. GSK-3 is encoded by two known genes, GSK-3α and GSK-3β. Activation of Akt signaling can be followed by phosphorylation of GSK-3α/β at Ser21/9 and its subsequent inactivation [35]. Interestingly, in another study [40], we have demonstrated that GSK-3 also plays a role in vomiting. Phosphorylation of GSK-3α and GSK-3β subtypes in the least shrew brainstem displays a time-dependent increase in response to a variety of

emetogens, including agonists of serotonin 5-HT\textsubscript{3} (e.g. 5-HT or 2-Methyl-5-HT\textsubscript{3}), neurokinin NK\textsubscript{1} (GR73632)-, dopamine D\textsubscript{3} (apomorphine or quinpirole)-, muscarinic M\textsubscript{1} (McN-A343 or pilocarpine)-receptors, as well as the LTCC agonist FPL64176 and the SERCA inhibitor thapsigargin [40]. Moreover, immunostaining has confirmed that GSK-3\textsubscript{α/β} phosphorylation at Ser21/9 exhibit increased immunoreactivity in the least shrew brainstem DVC emetic nuclei (AP, NTS and DMNX) in response to cisplatin administration (10 mg/kg, i.p.) [40]. Following administration of diverse emetogens including cisplatin, an increase in both phospho-GSK-3\textsubscript{α} Ser21 and phospho-GSK-3\textsubscript{β} Ser9 was also observed in the jejunal ENS of least shrew at 5 h post cisplatin administration (10 mg/kg, i.p.) [40]. Functionally, the GSK-3 inhibitor AR-A014418, has been shown to dose-dependently suppress both the frequency and percentage of shrews vomiting evoked by the above specific emetogens. Another GSK-3 inhibitor SB216763 is a more potent antiemetic than AR-A014418, since at lower dosage it exerted such broad antiemetic efficacy [40]. Differences in pharmacological properties of the two tested GSK-3 inhibitors may contribute to their differential antiemetic potential. Indeed, AR-A014418 is a selective ATP-competitive GSK-3\textsubscript{β} inhibitor (IC\textsubscript{50} = 104 nM) [36, 41-43], whereas SB216763 is considered as a more potent but equally effective inhibitor of both GSK-3\textsubscript{α} and GSK-3\textsubscript{β} (IC\textsubscript{50} = 34.3 nM) [44,45]. These data support an interesting hypothesis that following pharmacological induction of vomiting, the evoked phosphorylation (i.e. inhibition) of GSK-3 may exert a unique self-protective effect to avoid further vomiting. Thus, utilization of GSK-3 inhibitors may become a useful strategy for achieving a greater degree of inhibition of GSK-3 activity for suppression of vomiting.

In addition, we co-stained the least shrew jejunal sections with phospho-GSK-3\textsubscript{α} Ser21 with a 5-HT\textsubscript{3} antagonist and 5-HT or 2-Methyl-5-HT\textsubscript{3} antagonists combined with neurokinin NK\textsubscript{1} antagonists are at present the most effective therapeutic agents [3,4]. In this commentary, the discussed findings from the least shrew emesis model helps to open new avenues for antiemetic research against chemotherapeutic agents, as well as infectious agents including viruses and bacterial toxins [47]. These findings should be further tested in other established animal models of vomiting as well as in patients. The potential targets could include not only Ca2+ signals but also other signaling pathways such as ERK1/2 and PI3K/Akt with downstream GSK-3 and mTOR.

Conflicts of Interest

We have no conflict of interest to declare.

Acknowledgements

This work was supported by the NIH-NCI grant (CA207287) and WesternU intramural startup fund (1395) to NAD.

References

6. Ray AP, Chebolu S, Darmani NA. Receptor-selective...
agonists induce emesis and Fos expression in the brain and enteric nervous system of the least shrew (Cryptotis parva). Pharmacology Biochemistry and Behavior. 2009 Nov 1;94(1):211-8.

