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Introduction

Cytokine receptors may possess an intrinsic capability 
for the transduction of signals upon engagement by the 
respective cytokine ligand [1]. However, if they lack an own 
intracellular signaling entity, they rely on other signaling 
machineries. One of the key intracellular signaling 
molecules mediating cytokine effects on immune cells are 
Janus kinases (JAKs), which induce gene expression via 
signal transducer and activator of transcription proteins 
(STATs). In mammals, four JAK (JAK1, JAK2, JAK3 and 
Tyk2) and seven STAT proteins (STAT1, STAT2, STAT3, 
STAT4, STAT5A, STAT5B and STAT6) are described, which 
in varying combinations mediate signal transduction of 
well over fifty cytokines [2,3]. In the following article the 
role of JAK and STAT will be summarized.

JAK Inhibition in Inflammation

This array of cytokines, which rely on the JAK/STAT 
machinery, contains proinflammatory mediators, many 
of which are relevant for inflammatory diseases, such as 
rheumatoid arthritis (RA). RA is a chronic autoimmune 
disorder, characterized by a persistent symmetric 
polyarthritis and synovitis [4,5]. Inflammatory cytokines 
relevant to the pathogenesis of RA, utilizing the JAK/
STAT pathway, include interleukin-6 (IL-6), IL-7, IL-10, 
IL-12, IL-15, IL-21, IL-23 and interferons (α, β and γ) 
[6,7]. Consequently, JAK inhibitors have pursued their 
way into the clinical practice. Currently, in the USA and 

the EU three JAK inhibitors have been approved for the 
treatment of RA, tofacitinib, baricitinib and upadacitinib 
and a fourth, filgotinib, is about to follow [8-14]. 
Tofacitinib, conceptually a pan-JAK inhibitor, targets 
primarily JAK1 and JAK3, while baricitinib inhibits 
JAK1 and JAK2 [8,13,15-17]. Upadacitinib and filgotinib 
specifically suppress JAK1 activity [18,19]. McInnes et al. 
demonstrated differences in the pharmacokinetic profiles 
of tofacitinib and baricitinib, as well as varying in vitro 
pharmacology profiles, which highlights their differing 
substrate specificities [17]. Moreover, a meta-analysis in 
2020 compared the efficacy of multiple JAK inhibitors with 
adalimumab in RA patients on methotrexate background 
therapy. The authors confirmed that, compared to 
adalimumab, both baricitinib and tofacitinib exhibit higher 
probability of achieving ACR20 responses. However, RA 
patients receiving baricitinib additionally benefited from 
a significantly higher ACR50 response rate compared to 
adalimumab therapy [20]. RA patients generally respond 
well to all JAK inhibitors, which may be based on their 
inhibition of multiple inflammatory cytokines instead of 
just one, as the JAK/STAT machinery is shared by several 
cytokines [21,22]. 

JAK/STAT Signaling and Bone 

Less is known about the role of JAKs on bone homeostasis. 
However, the role of the JAK/STAT pathways on the 
immune system inevitably suggests that bone metabolism 
will also be influenced by JAKs [23]. Preclinical studies 
have shown that mice knocked out for STAT1 display an 
increased bone mass [24-26]. Moreover, global STAT3 
knockouts are lethal [27]. However, when specifically 
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knocked out in osteoblasts and osteocytes, STAT3 
deficient mice develop osteoporosis [28,29]. The clinical 
relevance of STAT3, as a signaling mediator in bone 
metabolism, is manifested in the Job’s syndrome, which 
is the result of a mutation in the STAT3-DNA-binding 
domain [30-33]. Patients with Job’s syndrome develop, 
among other symptoms, a bone phenotype: The number 
of bone-degrading osteoclasts is increased and bone 
mineral density is reduced. Patients suffer from recurrent 
fractures, due to increased bone fragility as a consequence 
of poor bone quality [23,30,32,34-36].

As JAKs and STATs primarily regulate immune function, 
these molecules and their inhibitors may also affect bone 
homeostasis during inflammatory diseases [37]. In RA, 
for instance, local and systemic bone loss develop, which 
require treatments that not only influence inflammation 
but also maintain or even restore bone mass [38-40]. 
There have been indications that JAK inhibitors may pose 
a beneficial impact on bone metabolism. For instance, 

Orsolini and colleagues suggested tofacitinib as a mean of 
limiting bone loss during chronic inflammatory diseases, 
such as RA and psoriatic arthritis [41]. However, the 
osteometabolic properties of JAK inhibitors have been 
systematically studied only recently.

JAK Inhibitors Enhance Bone Formation 
and Bone Mass

We conducted a preclinical analysis of the impact of 
JAK inhibition, by tofacitinib and baricitinib, on bone 
homeostasis in steady-state conditions and during 
pathological challenge by non-inflammatory bone loss 
(postmenopausal osteoporosis) and inflammation-
mediated bone loss (serum transfer arthritis) [42]. In all 
three models, JAK inhibitors consistently increased bone 
mass, predominantly of the trabecular compartment. As 
the numbers of osteoclasts and osteoblasts were unaffected 
by JAK inhibitor treatment, we suspected a functional 
influence of JAK inhibition on bone cells. 
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Figure 1: Suggested model for the significance of JAK inhibitors in the cross-talk between the IL-6/
JAK/STAT and the Wnt signaling axis. (Left) In the absence of JAK inhibitors, osteoblasts constitutively express 
the cytokine IL-6, which subsequently engages autocrine JAK/STAT signaling, resulting in the phosphorylation and 
thereby activation of STAT3. Phosphorylated STAT3-dimers induce the expression of SOCS proteins, which bind 
to β-Catenin and prompt its degradation by the cellular proteasome. (Right) In the presence of the JAK inhibitors 
baricitinib or tofacitinib, intracellular SOCS content is diminished, which results in intracellular accumulation of 
β-Catenin, inducing the expression of Wnt-target genes, such as Ocn. Illustration was created with SMART - Servier 
Medical Art under a common license 3.0 [43]. DNA: Deoxyribonucleic Acid; FZD: Frizzled; Gp130: Glycoprotein 130; 
Il: Interleukin; Il-6r: Interleukin-6 receptor; JAK: Janus Kinase; Lrp5/6: Low density lipoprotein receptor-related 
protein 5 or 6; Ocn: Osteocalcin; P: Phosphoryl group; Socs: Suppressor of cytokine signaling; Stat: Signal transducer 
and activator of transcription; Wnt: Wingless-related integration site.
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Therefore, we separately investigated the effect of JAK 
inhibitors on bone-degrading osteoclasts and bone-
forming osteoblasts in in vitro cultures. While osteoclasts 
were not directly affected by JAK inhibitors, JAK 
inhibition enhanced the mineralization capability and 
activity of osteoblasts. Whole transcriptome analysis of 
osteoblasts revealed induction of an osteoanabolic gene 
signature by JAK inhibitors enhancing the anabolic Wnt 
signaling pathway (Figure 1). When analyzing JAK/STAT 
interactions, we found no effect on STAT1-activation but 
almost complete abrogation of STAT3-activation by JAK 
inhibitors. Importantly, we explored RA patients for signs 
of bone repair, after having received JAK inhibitors for at 
least two years. High-resolution peripheral quantitative 
computed tomography (HR-pQCT) revealed repair of 
bone erosions in their hand joints of these patients.

Systemic Effects of JAK Inhibitors on 
Bone 

It has been demonstrated that the osteoblast- and 
osteocyte-specific knockdown of STAT3 reduced bone 
mass and quality [28,29]. Therefore, we did not expect 

to find STAT3 downregulation being involved in JAK 
inhibitor-mediated effects on osteoblasts. However, one 
has to keep in mind, that even a cell-specific knockout of 
a universal signal transducer, such as STAT3, may exhibit 
different effects compared to the targeted downregulation 
of an upstream JAK protein. In the case of JAK inhibition 
STAT3 is still present and able to engage in signal 
transduction, as long as the inducing cytokine utilizes 
a JAK protein, not targeted by the drug. Since STAT3 is 
a prominent mediator of cytokine signaling of the IL-6 
family of cytokines, which have been described to dampen 
osteoblast activity, we suspect that JAK inhibitors enhance 
osteoblast mineralization by interfering with IL-6 signaling 
[44]. Reduction in IL-6 signaling diminishes STAT3-
mediated transcription of target genes, such as Rankl 
and Socs, which would otherwise engage mechanisms to 
counter bone formation [42,45].

Moreover, the effects of JAK inhibition need to be seen 
in a systemic context: While the in vitro investigations 
of osteoblast cultures rely solely on their intrinsic 
secretion machinery, in vivo osteoblasts are embedded 
in a framework of other cells and extracellular matrix 
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Figure 2: Impact of JAK inhibition on bone. A direct impact of JAK inhibitors on osteoblasts has consistently 
been described. Osteoclasts are most likely affected by JAK inhibitors indirectly and through the actions of other cell 
types, such as osteoblasts and T lymphocytes. JAK inhibitors may affect T cell signaling, whereby they reduce RANKL 
in T lymphocytes [42,45-55]. Illustration was created with SMART - Servier Medical Art under a common license 3.0 
[43].  IL: Interleukin; JAK: Janus Kinase; OPG: Osteoprotegerin; RANKL: Receptor Activator of NF-κB Ligand; TNF: 
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which is laced with cytokines. We demonstrated a robust 
increase in bone mass upon JAK inhibition in a variety of 
preclinical models. To what extent our in vitro analysis 
of osteoclast and osteoblast monocultures is congruent 
with the systemic in vivo effects of JAK inhibitors remains 
to be determined. In vivo, osteoclasts could also be 
affected by JAK inhibition. Investigations have shown 
that osteoclasts are negatively affected by JAK inhibition 
indirectly via osteoblasts [45]. The group of Nakamura 
investigated osteoblast-osteoclast co-cultures and 
described that baricitinib reduced the expression of the 
receptor activator of nuclear factor-κB ligand (Rankl) in 
osteoblasts. With RANKL being one of the key drivers of 
osteoclast differentiation, osteoclastogenesis was impaired 
by baricitinib in osteoblast-osteoclast co-cultures [45]. 
Moreover, how osteocytes, an abundant cellular agonist 
of bone metabolism, can be affected with respect to JAK 
inhibition has not been well investigated (Figure 2).

Summary

The fact that JAK inhibitors have osteoanabolic 
properties raises several possibilities, which need to be 
addressed in future research. For instance, the data raises 
the question whether JAK inhibitors augment systemic 
bone mass in humans with postmenopausal osteoporosis 
or inflammation-induced osteoporosis. As JAK inhibition 
targets multiple cytokines simultaneously, they may be 
able to restore a homeostatic bone environment. The 
observation that JAK inhibitors allow the repair of bone 
erosions in RA supports the notion that the osteoanabolic 
effect of JAK inhibitors is also relevant to patients.
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