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Macrophage Phenotypes

Macrophages are important cells of the innate immune 
system and play a crucial role in host immune defense 
against infection and injury [1-3]. Macrophages form 
the first line of defense against airborne particles 
and microbes through multiple functions including 
phagocytosis, production of cytokines and chemokines, 
and antigen presentation. Macrophages are highly 
plastic cells and their phenotypes and functions can be 
regulated by the local microenvironment. Depending on 
the context, macrophages can be activated and polarized 
into different subsets. Macrophage polarization is a 
process whereby macrophages mount a specific phenotype 
and a functional response to the surrounding stimuli. 
Two major macrophage sub-populations with distinct 
functions have been characterized, and they are the 
M1 (also termed classically activated or inflammatory) 
and M2 (alternatively activated or anti-inflammatory) 
macrophages [2-4]. M1 macrophages are typically induced 
by pathogen-associated molecular patterns, such as double-
stranded RNA (dsRNA) and lipopolysaccharide (LPS), and 
by Th1 cytokines including interferon γ (IFNγ) and tumor 
necrosis factor α (TNFα). The activated macrophages 
acquire transcriptional changes to produce higher levels 

of pro-inflammatory cytokines and chemokines as well as 
reactive oxygen species, through which they contribute to 
host defense against pathogens and tissue damage [3,4]. 
On the contrary, M2 macrophages can be induced by Th2 
cytokines such as interlleukin-4 (IL-4) and IL-13 as well 
as anti-inflammatory cytokines IL-10 and transforming 
growth factor β (TGFβ). M2 macrophages are anti-
inflammatory and implicated in tissue repair, remodeling 
and vasculogenesis. M2 macrophages can be further 
divided into four different subsets that consist of M2a, 
M2b, M2c and M2d, depending on the stimuli received 
[5,6]. 

Necroptosis: A Critical Regulator of 
Inflammation

Programmed and regulated lytic cell death such as 
necroptosis is increasingly recognized as a driving factor 
in the pathogenesis of various forms of tissue injury and 
inflammation resulting from viral and bacterial infections, 
sepsis, trauma, sterile inflammation, mechanical 
ventilation, ischemia-reperfusion, and blood transfusion 
[7-13]. Unlike apoptosis, necroptosis causes cell membrane 
rupture, which triggers and amplifies inflammation 
thorough the release of damage-associated molecular 
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patterns, such as high-mobility group protein B1, IL-1 
family cytokines, nucleic acids, as well as S100 proteins 
[11,14]. Necroptosis is initiated by receptor-interacting 
protein kinase-3 (RIPK3) and executed by the effector 
mixed lineage kinase domain-like protein (MLKL) [9,15]. 
Activation of RIPK3 induces MLKL phosphorylation and 
membrane translocation and subsequent disruption of 
the plasma membrane, leading to necrotic cell death 
[16-19]. Necroptosis is negatively regulated by caspase-8 
together with a caspase-like molecule c-FLIPL [20] and 
by the ubiquitin ligases cIAP1 and cIAP2 [21]. Thus 
necroptosis is sensitized under caspase inhibition and 
cIAPs for degradation by Smac mimetics [19]. Caspase 8 
inhibitors have been identified in murine cytomegalovirus 
and herpes family viruses [22], while loss of cIAPs can 
happen during cytokine stimulation [23]. Necroptosis 
can be induced by TNF superfamily death ligands, Toll-
like receptor-3 (TLR3) and TLR4 ligands when caspases 
are inhibited and/or cIAPs are degraded [15-19,24]. TNF-
induced necroptosis requires the complex formation of 
RIPK1-RIPK3-MLKL [19,25]. Direct phosphorylation 
of RIPK3 by RIPK1 has not been demonstrated; hence 
oligomerization of RIPK3 driven by the RHIM domains 
of RIPK1 and RIPK3 leads to RIPK3 autoactivation [26]. 
Consistent with that, RIPK3 can be activated by associating 
with other two RHIM-containing adaptor proteins such 
as TRIF and Z-DNA/RNA binding protein 1 (ZBP1; also 
known as DAI/DLM-1) to mediate necroptosis by TLR3/4 
activation and virus infection, respectively [24,27,28]. 
RIPK3 activation is thus regulated by the competitive 
interactions with other three RHIM-containing proteins 
including RIPK1, TRIF and ZBP1 [9,15,24,29]. It has been 
shown that serum levels of RIPK3 are elevated in critically 
ill patients and are associated with the development of 
acute respiratory distress syndrome in sepsis, trauma and 
COVID-19 infection [30-32]. Recent experimental studies 
indicate that inhibition of necroptosis confers protection 
against acute lung injury and inflammation induced by 
LPS [33-35], hyperoxia [36], mechanical ventilation [37], 
sepsis/systemic inflammatory response syndrome [38-
40], respiratory syncytial virus Infection [41], bacterial 
pneumonia [42-44], trauma [45], and blood transfusion 
[46]. Hence, the targeting of necroptosis holds significant 
promise for the treatment of acute lung injury and 
inflammation. 

M1 Macrophages Are More Susceptible to 
Necroptosis 

Although macrophage activation and polarization has 
been well studied [2-4], we know less regarding the role 
of macrophage activation/polarization in inflammation-
associated necrotic cell death. The macrophage subtypes 
that are susceptible to necroptosis are not clear and the 
underlying mechanisms are likewise poorly understood. 

Most necroptosis studies are performed in resting cells 
[15-19,24], which is a commonly used approach to define 
the necroptosis signaling pathway. As inflammation and 
tissue injury is often associated with release of cytokines 
among other mediators, innate immune cells such as 
macrophages and tissue structural cells are expected 
to encounter these pro-inflammatory effectors and be 
activated. Based on the idea, in our recent study, we 
pretreated bone marrow-derived macrophages with M1 
(LPS, dsRNA and IFNγ) or M2 (IL-4, IL-10 and TGFβ) 
macrophage subtype inducers and then investigated the 
subtype-dependent responses to different necroptosis 
inducers. We found that macrophage necrotic cell death 
and the releases of lactate dehydrogenase and dead cell 
proteases were greatly augmented in M1 but not M2 
macrophages, and the enhanced effects were blocked by 
two structurally distinct specific RIPK3 inhibitors GSK872 
or GSK843 [47]. Our findings clearly demonstrate that 
M1 but not M2 subtypes of macrophages are much more 
susceptible to inflammation-related necrotic cell death in 
a RIPK3 kinase activity-dependent manner. The lytic cell 
death of M1 macrophages can result in release of not only 
damage-associated molecular patterns that are normally 
seen in resting cells [11,14], but also of high levels of newly 
synthesized pro-inflammatory cytokines and chemokines 
[3]. We thus posit that the burst of such immune-
stimulatory intracellular components could trigger and 
amplify inflammation, form a pro-inflammatory cycle and 
ultimately contribute to the pathogenesis of acute tissue 
injury and inflammation. Recent evidence has shown that 
necroptosis of alveolar macrophage plays an important role 
in the pathogenesis of acute lung injury and inflammation 
[41,48]. Our edifying findings also suggest that, like M1 
macrophages, LPS-, dsRNA- or IFNγ-activated/primed 
tissue structural epithelial and endothelial cells could 
be susceptible to necroptosis, which merits further 
investigation. In contrast, the M1 macrophage inducers 
did not enhance macrophage susceptibility to apoptosis 
inducers [47].

Delineation of the mechanisms participating in M1 
macrophage necroptosis may offer a novel strategy to 
control aberrant host innate immune responses and tissue 
damage. Mechanistically, we found that the necroptosis 
effector MLKL and the key necroptosis signaling molecule 
ZBP1 were exclusively induced by M1 but not M2 
macrophage subtype inducers [47] (Figure 1). We also 
found that the protein but not mRNA levels of RIPK3 
were upregulated in M1 macrophages, which suggests 
that protein synthesis or posttranslational regulation (e.g. 
stability) may be involved in the upregulation of RIPK3 
protein. Thus, enhanced necrotic cell death occurring in 
M1 macrophages may likely attribute to the upregulation 
of key necroptosis signaling molecules including RIPK3, 
MLKL and ZBP1 (Figure 1). In addition, we found that 



                                                                                                                                                      
  Hao Q, Idell S, Tang H. M1 Macrophages Are More Susceptible to Necroptosis. J Cell Immunol. 2021; 3(2): 97-102.

J Cell Immunol. 2021
Volume 3, Issue 2 99

these three necroptosis signal molecules were readily 
upregulated in M1 macrophage inducer-primed dendritic 
cells [47]. These results suggest that like M1 macrophages, 
the activated dendritic cells could be susceptible to 
necroptosis, promoting antigen presentation to T 
lymphocytes as demonstrated previously [49]. More 
studies are needed to define the proposed mechanisms. 

Conclusions and Perspectives

By using bone marrow-derived macrophages, we have 
recently reported that that M1 macrophages induced by 
LPS, IFNγ and dsRNA were much more sensitive than 
M0 and M2 subtypes of macrophages to various necrotic 
cell death inducers. The enhanced necroptosis in M1 
macrophages is dependent on RIPK3 kinase activity and 

may involve the upregulation of key necroptosis signaling 
molecules including RIPK3, MLKL and ZBP1 (Figure 1). 
These findings provide novel insights into the mechanisms 
of M1 macrophage engagement in inflammation and tissue 
injury. Since we used bone marrow-derived macrophages 
for the study, it will be important to determine if M1 
macrophages are more susceptible to necroptosis in 
vivo under disease conditions. Although inhibition of 
necroptosis confers protection against tissue injury and 
inflammation, the role of macrophages in the process is 
not clear. Generation of macrophage-specific knock out 
of RIPK3 will enable us to address this gap in current 
knowledge and to identify a specific therapeutic target 
that could be further developed to control various forms 
of inflammation and tissue injuries, in which macrophage 
death is a common feature.

RIPK3

MLKL

Necroptosis

DAMPs

Inflammation

ZBP1

Necroptosis
Signals

IFN
LPS, dsRNA

Figure 1: Potential mechanism of the enhanced necroptosis in M1 macrophages. DAMPs: Damage-associated Molecular Patterns.
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