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Inflammatory Bowel Disease (IBD), which includes 
Crohn’s Disease (CD) and Ulcerative Colitis (UC), has 
a heterogeneous pathogenesis underlined by genetic 
predisposition, intestinal barrier dysfunction, impaired 
immune response, and microbiota imbalance [1-3]. 
This proceeds to aberrant immune cells presence and 
function in the affected tissue, activation of signaling 
pathways, and expression of regulators that subsequently 
drive inflammation [2,4-7]. Using publicly available 
transcriptomes obtained from large number of UC 
patients from European and the US cohorts [8-16], we 
identified systemic immune cell landscape, pathways, and 
transcriptional signatures specific for UC as well as those 
determining outcome of biologic therapy [17]. 

The global immune cell landscape in UC colonic 
tissue, determined by CIBERSORT [18] assessment of 
transcriptomes, revealed systemically elevated levels 
of neutrophils, T CD4 memory activated cells, active 
dendritic cells (DC), M0/M1 macrophages, and B naïve 
cells. Several cell subsets were noticeably reduced such as T 
CD8, Tregs, B memory, and M2 macrophages. In addition, 
both resting DC and resting mast cells were lowered, while 
their active forms were elevated in UC tissue [17]. Relative 
abundances of other cell subsets in UC tissue were also 
altered but did not meet significant threshold with applied 
criteria. Individually, these immune cells are recognized 
to have important roles in intestinal inflammation [4-6]. 
Our findings demonstrated that this systemic immune cell 
landscape was common across UC patients in multiple 
cohorts. Elevated level of neutrophils in intestinal tissue, 
an early sign of inflammation, fuels disease by augmenting 
tissue damage [6,19]. Aberrant T cells and macrophages 
in the intestine are critical for facilitating inflammatory 
responses and injury [4,5,20,21]. Some immune cells 

have dual functions, such as B cells and DC, which are 
initially protective, but in the long run contribute to UC 
pathobiology [22-24]. Further, immune cells including 
macrophages can foster each other’s activity and stimulate 
other immune cells in promoting inflammation [5,25-27]. 
Moreover, decrease in certain cells in the intestine impairs 
protection from bacterial products from the lumen and 
weakens antigen presentation and processing [28]. 
Furthermore, in uninflamed (matched) colonic tissue 
from patients with active UC the majority of the samples 
displayed an immune cell landscape similar to healthy 
colonic tissue. However, presence of certain cells (CD4 
memory activated and Tregs) was similar to inflamed UC 
tissue, while presence of other cells (subsets of DC and 
macrophages) differed from both healthy and inflamed UC. 
Thus, uninflamed colonic tissue from patients with active 
UC may provide important information about pathogenesis 
and recurrent inflammatory episodes. Additionally, we 
found that a subset of T CD4 cells differed between cohorts, 
suggesting that these cells may be responsible for disease 
relapse [21,29]. We speculate that this difference between 
patient cohorts could be due to variations in composition 
of microbiota and diversity of regional diet. Similarly, 
differences in eosinophils, which are involved in protecting 
intestinal barrier integrity and immunity, might be related 
to geographic and seasonal disparities among UC cohorts 
[30,31]. Furthermore, UC tissue obtained from patients 
prior to biologic therapy with anti-TNFα and anti-α4β7, 
which were later identified clinically as non-responders, 
had considerably more neutrophils and T CD4 activated 
cells when compared to responders. Clinical studies 
demonstrated that non-responsiveness to the biologic 
therapy is, in part, related to disease severity, patients 
age at diagnosis, and duration of inflammation [32-35]. 
Similar findings are recently reported using single-cell 
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sequencing of a UC cohort [36]. The single-cell sequencing 
approach provides insight into the existence and behavior 
of different cell types, while CIBERSORT allows analysis 
of transcriptomes from multiple cohorts as well as from 
already existing transcriptomic data. This supports the 
importance of different approaches to understand the 
complexity of cell composition in UC pathobiology.  

Using Ingenuity Pathway Analysis, we discovered 
signaling pathways associated with differentially expressed 
genes (DEGs) in UC tissue compared to controls across 
different cohorts [17]. These systemic pathways are linked 
to bacterial response, inflammation, and intracellular 
signaling. Further, we identified a transcriptional 
signature consisting of the top hundred DEGs (UC100) 
that are common across three different cohorts [17]. In an 
independent cohort, the UC100 distinctly separated inflamed 
from non-inflamed samples via hierarchical clustering. 
Among the DEGs in the UC100 are those with established 
roles in UC pathobiology including regulators of hypoxia, 
nitric oxide, inflammation, matrix metallopeptidases, and 
calcium signaling [6,37-40]. Moreover, we selected DEGs 
whose role in IBD are not well examined for validation 
in primary UC tissue (by qPCR) that encode regulators 
of lipid metabolism and mitochondrial function. As 
for regulators of lipid metabolism, we found increased 
LPCAT1, which controls lipid droplet number and size 
[41], LIPG, involved in lipoprotein metabolism [42], and 
HCAR3, which regulates lipolysis [43,44]. Increased lipid 
metabolism and intracellular lipid droplets drive intestinal 
inflammation [45-47]. In addition, LIPG may be involved 
in endothelial biology [42] and HCAR3 may play roles in 
crosstalk between metabolites derived from microbiota 
and immune cells [43,44]. Moreover, DEGs encoding 
regulators of mitochondrial function including ACAT1 and 
HMGCS2 are decreased in UC tissues.  Limited studies 
demonstrated that loss of HMGCS2 function in intestinal 
stem cells could impact intestinal barrier renewal 
and function [48,49], while ACAT1 has been recently 
implicated in inflammatory responses in macrophages 
[50]. In IBD, aberrant expression of mitochondrial 
regulators leads to reduced respiratory activity, which 
may further exacerbate response to bacterial signaling 
[51-55]. A recent study revealed that mitochondrial 
fission-fusion is critical in homeostasis of intestinal cells 
and macrophages [56]. Mitochondrial reprograming may 
also depend on environmental factors, such as use of 
antibiotics and intake of a high-fat western diet [57]. The 
exact mechanisms and role of metabolic reprograming 
with lipids and mitochondria in intestinal cells and 
immune cells are not fully understood. Their emergence 
as a hallmark of intestinal inflammation highlights the 
importance of lipids and mitochondria in the underlying 
mechanism of disease.

Furthermore, twenty “resistant” DEGs (UC20R) from 

transcriptomes of UC patients that were common for 
non-responders to both anti-TNFα and anti-α4β7 therapy 
were identified [17]. DEGs within UC20R encode regulators 
involved in bacteria response, defense response, cell 
signaling, cell trafficking, endothelial function, and 
metabolism. The UC20R transcriptional signature had 
significant predictive power for determining (non)
response to both anti-TNFα and anti-α4β7 therapy as 
demonstrated by receiver operating characteristic (ROC) 
curve analysis and calculating area under the curve (AUC) 
[17]. Several DEGs with the highest prediction (sensitivity 
of 73.3% and specificity 85.7%) for non-responding to both 
therapies, including SELE, VNN2, and STC1, have critical 
roles in neutrophil accumulation and transendothelial 
movement at sites of inflammation [58]. This suggests 
a possible role of immune cell trafficking in predicting 
response to biologic therapy. Moreover, these features of 
disease could also be, in part, mediated by changes in the 
microbiota caused by therapy [59]. Therefore, identifying 
additional resistant signatures in UC patients may provide 
guidance for using select therapy and more personalized 
therapeutic approaches. 

A comprehensive assessment of transcriptomes from 
UC patient colonic tissue demonstrated shared and 
distinct immune cell landscape, signaling pathways, 
and transcriptional signatures among cohorts. Further 
development of new approaches differentiating active 
from non-active immune cells and interactive from non-
interactive cells may provide a platform for more precision-
based identifiers of cell heterogenicity in affected tissue. 
Additionally, combination of bioinformatics approach 
with human genetics, epigenetics, and single-cell genomics 
will lead to mechanistic understanding of inflammatory 
disorders, risks of recurrence, and association with 
treatment outcomes. Consequently, it is plausible that 
these directions may provide clues for development of 
more precise, personalized diagnostics and therapeutic 
intervention for UC. 
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