
J Cell Immunol. 2025
Volume 7, Issue 4

Journal of Cellular Immunology Review Article

146

J Cell Immunol. 2025;7(4):146–172.

Mechanisms and Therapeutic Strategies to Overcome Immune 
Checkpoint Inhibitor Resistance in Melanoma, Head and Neck, 
and Triple-Negative Breast Cancers

Iryna Voloshyna1,2,#, Apoorvi Tyagi1,#, Stanzin Idga1, Nicole Wang1, Tazrif Amin1, Madonna Hanna1, Adil Mukhtar1, 
Francesca Torres1, Farah Kabir1, Dominic Florian1, Chloe Wang1, Yury Patskovsky1,2, Michelle Krogsgaard1,2,*

1Laura and Isaac Perlmutter Cancer Center at NYU Langone Health, New York, NY, USA
2Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
#These authors have contributed equally

*Corresponding Author: Michelle Krogsgaard, Michelle.Krogsgaard@nyulangone.org

Received date: September 11, 2025, Accepted date: October 22, 2025

Citation: Voloshyna I, Tyagi A, Idga S, Wang N, Amin T, Hanna M, et al. Mechanisms and Therapeutic Strategies to Overcome 
Immune Checkpoint Inhibitor Resistance in Melanoma, Head and Neck, and Triple-Negative Breast Cancers. J Cell Immunol. 
2025;7(4):146–172.

Copyright: © 2025 Voloshyna I, et al. This is an open-access article distributed under the terms of the Creative Commons 
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author  
and source are credited.

Introduction

Immunotherapy has fundamentally transformed modern 
oncology, offering durable clinical responses and opening 
new therapeutic avenues for a wide range of malignancies. By 
harnessing the host immune system to target and eliminate 
cancer cells, therapies such as immune checkpoint inhibitors 
(ICIs) have achieved breakthroughs in cancers previously 
considered treatment-refractory [1,2]. The approval of 

ipilimumab, a cytotoxic T-lymphocyte-associated protein 4 
(CTLA-4) antibody, for advanced cutaneous melanoma in 
2011 marked the dawn of a new era in cancer treatment [3]. 
Subsequent regulatory approvals of programmed death-1 
(PD-1) and its ligand (PD-L1) inhibitors have rapidly expanded 
the impact of ICIs to multiple solid tumors, including head and 
neck squamous cell carcinoma (HNSCC) and triple-negative 
breast cancer (TNBC) [2,4–6]. These cancers remain at the 
forefront of clinical and translational immuno-oncology. 
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Melanoma, HNSCC, and TNBC exemplify both the successes 
and limitations of current immunotherapeutic strategies. In 
melanoma, historically dismal outcomes with chemotherapy 
or interleukin-2 (IL-2) therapy have been replaced by 
unprecedented long-term survival in a subset of patients, 
driven by its high tumor mutational burden, abundant 
neoantigen repertoire, and a tumor microenvironment 
conducive to T-cell infiltration [7–9]. Despite these advances, 
most patients ultimately develop primary or acquired 
resistance (relapse after initial benefit) [10–12]. Similarly, ICIs 
have reshaped the therapeutic landscape in HNSCC, a cancer 
often associated with oncogenic viral infection, tobacco 
and alcohol exposure, and often marked by a profoundly 
immunosuppressive tumor microenvironment (TME) [13, 
14]. Although PD-1 blockade has provided meaningful 
improvements in recurrent or metastatic disease, only a subset 
of patients experiences durable benefit, reflecting resistance 
mechanisms driven by tumor heterogeneity, immune 
exclusion, and adaptive immunosuppression [14].  TNBC, the 
most aggressive breast cancer subtype characterized by the 
absence of estrogen receptor (ER), progesterone receptor (PR), 
and human epidermal growth factor receptor 2 (HER2), has 
likewise benefited from ICI-based combinations. The addition of 
pembrolizumab to chemotherapy has improved outcomes in 
both early-stage and metastatic settings [15–17]. Nevertheless, 
durable responses remain uncommon, underscoring the need 
to better understand tumor-immune escape and to identify 
strategies that extend therapeutic benefit.

Resistance across these cancers, whether primary (non-
response) or acquired (relapses following initial response), 
emerges from a multifaceted interplay of tumor-intrinsic 
factors (e.g., antigen-presentation loss, signaling pathway 
alterations) and microenvironmental barriers (e.g. 
immunosuppressive cells, stromal remodeling) and systemic 
host-related constraints (e.g. metabolism, microbiome) that 
collectively blunt effective antitumor immunity [18–20]. 

This review examines melanoma, HNSCC, and TNBC as 

model immunogenic epithelial cancers responsive to ICI. We 
highlight both convergent and cancer-specific resistance 
mechanisms, explore their clinical implications, and discuss 
emerging therapeutic strategies—including rational ICI 
combinations, neoantigen-targeted vaccines, adoptive 
T-cell therapies, and precision-based patient selection. By 
integrating current insights, we aim to provide a framework 
for overcoming resistance and optimizing immunotherapy 
outcomes for these difficult-to-treat malignancies.

Current Clinical Landscape of Immunotherapy and ICI 
Resistance 

Over the past decade, immune checkpoint blockade has 
become a standard of care across multiple malignancies. 
ICIs function by removing the inhibitory signals on T-cell 
activity, most prominently through pathways involving CTLA-
4 (CD152) [21], PD-1 (CD279)/PD-L1 (CD274) [22]. While the 
number of newly identified immune checkpoint molecules 
is rapidly expanding, the clinically approved portfolio of ICIs 
remains limited, reflecting the complex biology of checkpoint 
regulation [23] and the highly variable efficacy of these agents 
across tumor types [24]. This variability is strongly influenced 
by tumor-intrinsic biology and the characteristics of the tumor 
microenvironment (TME) (Table 1). 

Melanoma

Among solid tumors, cutaneous melanoma shows the 
highest responsiveness to ICIs, in contrast to acral and 
uveal melanomas, which are generally refractory to these 
therapies [25–28] (Table 1). Prior to ICIs, metastatic disease 
was associated with a median survival of less than one 
year, with minimal benefit from chemotherapy or high-
dose interleukin-2 [29].  The introduction of anti-CTLA-4 
inhibitor (ipilimumab) and PD-1 inhibitors (nivolumab, 
pembrolizumab) transformed outcomes for advanced disease 
[25] (Table 2). Landmark clinical trials, including MDX010-20 
[30], KEYNOTE-006 [31], and CheckMate-067 [32], not only 

Table 1. Shared and cancer-specific features shaping ICI response in melanoma, HNSCC, and TNBC.

Melanoma HNSCC TNBC

Common resistance 
mechanisms

·	 Impaired antigen presentation (B2M, MHCI mutations)
·	 Defects in the IFN-γ signaling pathway (JAK1/2 mutations)
·	 Activated oncogenic pathways
·	 Suppressive TME—enriched in Treg, MDSCs, and TAMs

Unique cancer features ·	 ↑ UV TMB and neoantigen load
·	 ↑ Melanocyte lineage antigens

↑ Immune infiltration

·	 HPV+ (E6/E7) and HPV- subtypes
·	 Tobacco-related mutations and 

neoantigen landscape
·	 Unique TME (↑NK-cell infiltration 

(CD56dim)

·	 ↓ TMB
·	 Poor antigen presentation
·	 Strong stromal barriers

↑ Immune “cold” TME

Response to ICI 
monotherapy

~40–45% ORR ~15–20% ORR ~5-20% ORR
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Table 2. Key clinical trials establishing ICIs as a standard of care in melanoma, HNSCC, and TNBC.

Trial Number Treatment Subject Reference

Melanoma

NCT03396952 Pembrolizumab + Ipilimumab + High‑dose Aspirin Advanced Metastatic Melanoma [47]

NCT01844505 Nivolumab or Nivolumab + Ipilimumab vs. Ipilimumab 
Alone

Advanced Melanoma [48]

NCT03470922 Relatlimab + Nivolumab vs. Nivolumab Alone Advanced Melanoma [49]

NCT04949113 Neoadjuvant Ipilimumab + Nivolumab vs. Standard 
Adjuvant Nivolumab

Stage III Melanoma [50]

NCT04274816 Intradermal Tremelimumab (low dose) Early-stage Melanoma (Stage I–II) [51]

NCT01866319 
(KEYNOTE-006)

Pembrolizumab vs. Ipilimumab Metastatic Melanoma [31]

NCT00323206 Intratumoral IL‑12 plasmid + electroporation Metastatic Melanoma (Phase I dose 
escalation)

[52]

NCT02275416 UV1 peptide vaccine + Ipilimumab Unresectable Metastatic Melanoma [53]

NCT02752074 (ECHO-
301/ KEYNOTE-252)

Epacadostat + Pembrolizumab vs. Pembrolizumab alone Unresectable/Metastatic Melanoma [54]

NCT02475213 Enoblituzumab + Pembrolizumab Advanced Solid Tumors (including 
Melanoma)

[55]

NCT03693612 
(INDUCE-2)

Feladilimab + Tremelimumab Advanced Solid Tumors (including 
Melanoma)

[56]

NCT03776136 (LEAP-
004)

Lenvatinib + Pembrolizumab Unresectable Stage III/IV Melanoma with 
progression on prior PD-1/PD-L1 therapy

[57]

NCT00179608 Lenalidomide + Dacarbazine Chemo-naïve Metastatic Melanoma 
patients

[58]

NCT00864253 Nab-paclitaxel vs. Dacarbazine Metastatic Melanoma [59]

NCT03178851 Cobimetinib + Atezolizumab BRAF V600 WT Advanced Melanoma, 
post–PD-1 therapy

[60]

NCT00086489 Tremelimumab Advanced Melanoma [61]

NCT01656642 Atezolizumab + Vemurafenib ± Cobimetinib Metastatic Melanoma (BRAF V600–
mutant)

[62]

NCT00616564 ch14.18 + R24 antibodies combined with IL‑2 Metastatic Melanoma (23 patients) and 
Sarcoma (4 patients)

[63]

NCT00631072 Autologous iNKT cell infusion Stage IIIB–IV Melanoma [64]

NCT04551352 TYRP1‑TCB (RO7293583) — bispecific antibody targeting 
TYRP1 + CD3

Metastatic Melanoma (cutaneous, uveal, 
mucosal; TYRP1-positive)

[65]

Head and Neck Cancers

KEYNOTE-048 Pembrolizumab mono; Pembro + chemo + 5-FU 

Cetuximab + chemo + 5-FU 

Recurrent/Metastatic HNSCC [66]

NCT02741570 Nivolumab + ipilimumab vs. EXTREME regimen Recurrent/Metastatic HNSCC [67]

NCT02252042 Pembrolizumab vs. methotrexate, docetaxel or 
cetuximab

Recurrent/Metastatic HNSCC [68]

NCT03342911 Nivolumab + carboplatin + paclitaxel Stage III-IV HNSCC [69]
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demonstrated objective response rates (ORRs) of ~40–45% 
but also achieved unprecedented long-term survival, with 
> 40% overall survival (OS) at 6.5 years in some cohorts [33]. 
Pembrolizumab has shown particularly strong activity in 
desmoplastic melanoma, with ORRs approaching 89%, high 
rates of pathological complete response (pCR), and extended 
disease-free survival [34]. Combination regimens (ipilimumab 
plus nivolumab) have further improved progression-free 
survival (PFS) compared with monotherapy. For patients 
with BRAF-mutant melanoma, the Phase III DREAMseq trial 

established the sequencing of targeted therapy (dabrafenib/
trametinib) after combined ICI (nivolumab/ipilimumab) as the 
preferred treatment strategy (Table 2), demonstrating a 30% 
improvement in OS and a threefold improvement in PFS at 5 
years compared with either therapy alone [35].

Despite these advances, resistance to ICI remains a significant 
clinical challenge, presenting either as primary non-response 
or acquired relapse. Approximately 55% of melanoma patients 
have primary resistance to PD-1 inhibitors, 40% to CTLA-4+PD-1 

NCT04282109 Nivolumab + paclitaxel Recurrent/Metastatic HNSCC [70]

NCT02179918 PF-05082566 + pembrolizumab (anti-PD-1) Advanced Solid Tumors [71]

NCT02110082 Urelumab (4-1BB agonist) and cetuximab Advanced/Metastatic HNSCC [72]

Triple Negative Breast Cancer

NCT02622074 Pembrolizumab + Chemotherapy as Neoadjuvant Early-Stage TNBC [73,74]

NCT04613674 Camrelizumab + Chemotherapy vs. placebo + 
chemotherapy

Early or Locally Advanced TNBC [75]

NCT03289819 Neoadjuvant Pembrolizumab/Nab-Paclitaxel Followed by 
Pembrolizumab/Epirubicin/​Cyclophosphamide

Early-Stage TNBC [76]

NCT02819518 Pembrolizumab combinations vs. Placebo + 
Chemotherapy

Previously untreated locally recurrent 
Metastatic TNBC

[77,78]

NCT03487666 Nivolumab and Capecitabine combined vs. alone TNBC [79]

NCT03125902 Atezolizumab + Paclitaxel vs. Atezolizumab Placebo + 
Paclitaxel

Previously Untreated Inoperable Locally 
Advanced or Metastatic TNBC

[80]

NCT02413320 Carboplatin + Paclitaxel then Doxorubicin + 
Cyclophosphamide vs. Carboplatin + Docetaxel

Stage I-III TNBC [81]

NCT02447003 Pembrolizumab Metastatic TNBC [82]

NCT01375842 Atezolizumab Metastatic TNBC [83]

NCT01772004 Avelumab Metastatic TNBC [84]

NCT02657889 Pembrolizumab + Niraparib Advanced/Metastatic TNBC [85]

NCT03330405 ICIs + Avelumab + Talazoparib Advanced TNBC [86]

NCT02555657 Pembrolizumab vs. TPCe Metastatic TNBC [87]

NCT02734004 Olaparib + Durvalumab Metastatic TNBC [88]

NCT01042379 Paclitaxel with or without Pembrolizumab + adjuvant 
chemotherapy

Early-stage TNBC [89]

NCT01633970 Nab-paclitaxel + Atezolizumab Metastatic TNBC [90]

NCT04129996 Angiogenesis inhibitor + Camrelizumab + Chemotherapy Advanced immunomodulatory TNBC 
patients

[91]

NCT02425891 Nabpaclitaxel +  Atezolizumab/Placebo Metastatic TNBC [92]

NCT02299999 Durvalumab vs. Chemotherapy Metastatic TNBC [93]

Trials are categorized by cancer type, treatment regimen, patient population, and corresponding reference. Included studies highlight 
both monotherapy and combination strategies that have shaped current clinical practice and informed emerging approaches to overcome 
resistance.
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combination therapy, and 25% of initial PD-1 responders 
acquire resistance within two years [36]. Mechanistic drivers 
of resistance include loss of antigen-presentation [37], 
defects in interferon-γ (IFN-γ) signaling [38,39], activation 
of the WNT/β-catenin pathway [40–42], upregulation of 
compensatory inhibitory checkpoints [43], and recruitment of 
immunosuppressive myeloid cells [44] (Table 1). Many of these 
mechanisms are now being targeted with rational ICI-based 
combinations. For example, melanoma’s high mutational and 
neoantigen load made it the first tumor type to be evaluated 
in clinical trials of personalized neoantigen mRNA vaccine. 
The Phase IIb KEYNOTE-942 trial (mRNA-4157/V940, Merck 
and Moderna) [45] demonstrated that adding a personalized 
vaccine to pembrolizumab significantly improved recurrence-
free survival (79% vs. 62%) and distant metastasis-free survival 
(92% vs. 77%) at 18 months compared with pembrolizumab 
alone (Table 1) [45]. The recent approval of anti-lymphocyte 
activation gene-3 (LAG-3) therapy (relatlimab plus nivolumab) 
further illustrates how rational ICI combinations are expanding 
the potential for durable response [46]. 

HNSCC

HNSCC is biologically heterogeneous, influenced by risk 
factors such as tobacco, alcohol, and human papillomavirus 
(HPV) infection, which significantly shape the tumor immune 
landscape [94]. Historically, platinum-based chemotherapy 
has served as the backbone of first-line therapy for recurrent or 
metastatic HNSCC. HPV-positive (HPV+) tumors are generally 
more inflamed and responsive to ICIs, whereas HPV-negative 
(HPV-) tumors often exhibit immune exclusion and profound 
immunosuppression [95]. 

The clinical efficacy of PD-1 blockade in platinum-refractory 
HNSCC was established through the CheckMate-141 
(nivolumab) and KEYNOTE-040 (pembrolizumab) trials, 
confirming ICIs as a standard of care in this setting [68] 
(Table 2). The role of PD-1 inhibitors was later expanded to 
the first-line therapy in KEYNOTE-048, where pembrolizumab 
improved outcomes both as monotherapy for PD-L1-positive 
tumors and in combination with platinum/5-FU for all patients 
[66]. Despite durable benefits in a subset of patients, objective 
response rates remain modest (~15–20%) [96–98] (Table 
1). KEYNOTE-012 [99] and KEYNOTE-055 [100] confirmed 
comparable efficacy for PD-1 blockade between HPV+ and 
HPV- populations in recurrent/metastatic HNSCC. Similarly, 
CheckMate-141 demonstrated improved response rates 
(13.3% vs. 5.8%) and OS in 361 platinum-refractory HNSCC 
patients treated with nivolumab, with no significant difference 
between HPV+ and HPV- status [101] (Table 2). In contrast, a 
PD-L1 inhibitor, durvalumab, has not demonstrated benefit 
in this setting. Phase III trials of durvalumab alone or in 
combination with tremelimumab (a CTLA-4 inhibitor) failed to 
improve OS compared with chemotherapy, limiting its clinical 
role in recurrent/metastatic HNSCC [102,103].

Resistance in HNSCC is multifactorial (Table 1), including loss 
of MHC I expression, defective IFN-γ signaling, T-cell exclusion, 
and expansion of regulatory T cells (Treg) and myeloid-
derived suppressor cells (MDSCs) within the TME [96,104,105]. 
Like melanoma and TNBC, many HNSCC tumors upregulate 
PD-L1 in response to IFN-γ [106], and alterations in the 
phosphoinositide-3-kinase (PI3K) - phosphatase and tensin 
homolog (PTEN) pathway contribute further to tumor evasion 
due to the developed dysfunction of immune cells [24,107]. 
HNSCC exhibits unique features as HPV+ tumors evade 
immunity via viral oncoproteins E6/E7 [107], displaying high 
T-cell infiltration but increased Tregs and CTLA-4 expression 
[22,23]. Tobacco-associated tumors have reduced immune 
infiltration despite high mutational burden, consistent with 
poorer outcomes [109,110]. Additionally, HNSCC displays 
distinctive natural killer (NK)-cell biology, characterized 
by abundant CD56dim NK cells [13,111]. The NK activity is 
suppressed through killer cell immunoglobulin-like receptor 
(KIR) signaling and can be influenced by HPV status [13] 
(Table 1). Emerging treatment strategies for HNSCC include 
dual checkpoint blockade (PD-1 plus CTLA-4 or LAG-3) and 
combinations with radiation, vaccines, or targeted therapies 
aimed at reprogramming the immune TME [112,113].

TNBC

TNBC, defined by the absence of ER, PR, and HER2 expression, 
is associated with poor prognosis and limited targeted 
treatment options. Early-phase studies demonstrated modest 
efficacy of PD-1 or PD-L1 inhibitors as monotherapy (~5–20% 
ORR) in TNBC patients [82,114] (Table 2). The Phase I JAVELIN 
trial of avelumab (targeting anti-PD-L1) reported ORRs of 
44.4% in PD-L1-high versus 2.6% in PD-L1-low TNBC patients 
[84]. Single-agent efficacy remains limited, with progression 
driven by intrinsic resistance mechanisms such as immune 
exclusion and adaptive resistance pathways [84]. TNBC is 
typically characterized by low TMB, limited tumor-infiltrating 
lymphocytes (TILs), and strong stromal barriers, making 
it less responsive to ICIs than melanoma [115] (Table 1). 
Approximately 20–30% of TNBC tumors express PD-L1, often 
correlating with higher TIL infiltration and higher histological 
grade [116], providing an additional target for ICI.

Combination strategies have proven more effective. Meta-
analyses show that ICIs combined with anthracyclines and 
taxanes significantly increase pCR (64.8%) in early TNBC while 
reducing toxicity compared to platinum chemotherapy [117]. 
Combining anthracycline and taxane chemotherapy with 
durvalumab as adjuvant therapy can improve the prognosis 
of early TNBC [118]. The IMpassion130 trial demonstrated that 
atezolizumab plus nab-paclitaxel improved PFS and OS in PD-
L1-positive metastatic TNBC, although IMpassion131 failed 
to replicate these benefits (Table 2) [117]. KEYNOTE-35 trial 
found that pembrolizumab plus chemotherapy extended OS 
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in PD-L1–high (CPS≥10) metastatic TNBC patients (median OS 
of 23.0 vs. 16.1 months) [77]. In early disease, KEYNOTE-522 
showed that pembrolizumab plus neoadjuvant chemotherapy 
improved pCR (64.8% vs. 51.2%) and event-free survival [119].

Despite these advances, TNBC remains largely ICI-refractory 
[120] (Table 1). Shared resistance mechanisms include 
immune exclusion, defective antigen presentation, and 
suppressive myeloid infiltration, but TNBC exhibits certain 
distinct features: low TMB, absence of pre-existing tumor-
specific immunity, stromal-mediated T-cell exclusion, and 
macrophage-driven suppression. High genomic instability is 
another hallmark of TNBC [20,121,122]. While challenging, it 
also presents opportunities for targeted interventions, such 
as poly (ADP-ribose) polymerase (PARP) and Protein Kinase B 
(AKT) inhibitors, to enhance response rates [123]. TNBC tumors 
often display immune-excluded phenotypes, characterized by 
a lack of immune cell infiltration into the tumor parenchyma 
due to a dense stromal matrix and TGF-beta-induced fibrosis 
acting as physical barriers [121,122].

Mechanisms of Resistance to ICI Therapy 

Resistance to ICIs can be broadly divided into tumor-intrinsic 
and -extrinsic mechanisms. Intrinsic mechanisms arise from 
genetic and signaling alterations within tumor cells that 
impair immune recognition or effector function. Extrinsic 
mechanisms occur in the TME, where cellular and soluble 
factors create an immunosuppressive milieu. In practice, these 
mechanisms are highly interconnected and often overlap, 
collectively shaping the degree and durability of response 
[124,125] (Figures 1 and 2). 

1. Tumor-intrinsic resistance mechanisms 

Tumor mutation burden and neoantigen load: One of the 
strongest correlates of ICI efficacy is TMB and the associated 
generation of non-synonymous mutations that produce 
immunogenic neoantigens [126]. High TMB, particularly 
observed in mismatch repair-deficient tumors, is associated 
with improved ICI responsiveness [127–129] (Figure 1.1). 
Melanoma exemplifies this phenomenon: ultraviolet-induced 
mutagenesis produces one of the highest TMBs among 
solid tumors, generating a rich neoantigen landscape that 
drives robust immune recognition [130,131]. Consistent 
with this concept, recent clinical analyses have shown that 
patients receiving biomarker-guided dual-matched therapies 
(combining targeted agents with ICIs) can experience durable 
clinical benefit, including long-term survival exceeding 1.5 
years in some cases [132]. While the overall TMB in HNSCC is 
intermediate compared to melanoma, a significant subset of 
HNSCC patients have elevated TMB, and this is predictive of 
better responses to ICIs [133,134]. 

HPV status significantly shapes the neoantigen repertoire 
with HPV+ tumors, in addition to tumor-derived neoantigens, 
presenting viral antigens that enhance immune responses, 

whereas HPV- tumors often show neoantigen loss [135]. 
By contrast, TNBC exhibits lower TMB, limiting neoantigen-
driven immunity and contributing to modest ICI response 
rates [136]. Highly immunogenic tumors such as melanoma, 
HNSCC, and non-small cell lung carcinoma, with enriched 
TMB and neoantigen landscapes, are more responsive to 
ICIs than tumors with low TMB, such as TNBC, prostate, and 
pancreatic cancers. Consequently, low-TMB tumors often 
exhibit poor T cell infiltration and a "cold" tumor immune TME 
[131,137,138] (Figure 1.1). However, TMB is not universally 
predictive of ICI response [139]. Tumors with high neoantigen 
load may still develop resistance if these neoantigens are 
weakly immunogenic [140,141] or actively suppress immune 
responses (inhibitory neoantigens) [141–145]. Current 
strategies focus on radiotherapy, chemotherapy, and vaccines 
in combination with immunotherapy to increase neoantigen 
availability and enhance immunogenicity [146–148]. 

Recent evidence indicates that neoantigens can also arise 
from post-translational modifications, including glycosylation 
(O-linked β-N-acetylglucosamine), phosphorylation 
(phospho-neoantigens), and alternative RNA splicing [149–
151]. These modifications expand antigenic diversity, create 
unique epitopes, and provide an immunological signature of 
the "transformed self" recognized by T cells [152,153]. Some 
phospho-neoantigens are shared across multiple tumor types 
and patients, offering the potential for immunotherapeutic 
targeting beyond personalized approaches [154]. 

Impaired antigen processing and presentation: Defects in 
antigen presentation are a well-documented mechanism of ICI 
resistance [155] (Figure 1.2). Effective CD8+ T-cell recognition 
requires intact MHC-I-mediated antigen processing and 
presentation of tumor antigens [156]. Loss of MHC-I surface 
expression or structural disruption allows tumors to evade 
T-cell surveillance [157]. Mutations in β2-microglobulin 
(B2M) destabilize MHC-I complexes [158], while deficiencies 
in transporters associated with antigen processing (TAP1/2) 
or endoplasmic reticulum (ER) aminopeptidases (ERAP1/2) 
impair peptide translocation and loading [159,160]. 

These alterations occur across melanoma, HNSCC, and 
TNBC, with context-dependent contributions [161,162]. 
In melanoma, B2M mutations and MHC-I downregulation 
are strongly linked to acquired resistance after initial PD-1 
blockade, and IFN-γ pathway defects further reduce antigen 
presentation [163,164] (Figure 1.2). In HNSCC, antigen 
presentation status is influenced by HPV status, with HPV+ 
tumors generally retaining intact MHC-I expression and an 
inflamed TME, whereas HPV- tumors more often lack MHC-I, 
correlating with poor ICI response [124]. Beyond MHC-I, 
impaired MHC-II presentation by tumor or myeloid cells 
attenuates CD4+ T-cell-mediated immunity, adding another 
layer of immune evasion [165]. In TNBC, B2M mutations are 
less common, with resistance often driven by transcriptional 
or epigenetic repression of antigen presentation machinery 
[161,166]. 



Voloshyna I, Tyagi A, Idga S, Wang N, Amin T, Hanna M, et al. Mechanisms and Therapeutic Strategies to Overcome 
Immune Checkpoint Inhibitor Resistance in Melanoma, Head and Neck, and Triple-Negative Breast Cancers. J Cell 
Immunol. 2025;7(4):146–172.

J Cell Immunol. 2025
Volume 7, Issue 4 152

Disruption of IFN-γ signaling: The IFN-γ pathway is central 
to tumor immune recognition (Figure 1.3), driving expression 
of MHC-I and immunoregulatory molecules such as PD-
L1 via Janus kinases 1 and 2 (JAK1 and JAK2) and the signal 
transducer and activator of transcription 1 (STAT1) activation 
[167]. Disruption of this pathway by tumor-intrinsic alterations 
is a well-established mechanism of primary resistance to ICIs. 
Loss-of-function mutations or epigenetic silencing of JAK1/
JAK2, and downstream transcriptional regulators impair 
the IFN-γ–mediated induction of the antigen presentation 
machinery and checkpoint ligands, enabling tumor immune 
evasion by rendering tumors “invisible” to cytotoxic T cells, 
even in the context of high TMB [164,168]. Consequently, in 
melanoma, HNSCC, and TNBC, JAK/STAT pathway inactivation 
prevents IFN-γ-induced upregulation of MHC-I and PD-L1, 
contributing to primary resistance despite an increased 
neoantigen burden [163,169] (Figure 1.3). 

In HNSCC (particularly HPV+) and TNBC, preserved IFN-γ 
signaling drives strong PD-L1 induction (Figure. 1.3), limiting 
T-cell activity and promoting adaptive resistance [170]. HPV- 
and tobacco-associated tumors often harbor JAK/STAT defects, 
reducing IFN-γ signaling, diminishing antigen presentation, 
and promoting tumor immune evasion [171]. Amplification of 
negative regulators, such as suppressor of cytokine signaling 
1 (SOCS1) and protein inhibitor of activated STAT4 (PIAS4), 
further suppresses IFN-γ signaling [169], thereby facilitating 
immune evasion. 

Paradoxically, intact IFN-γ signaling can also drive adaptive 
resistance, as chronic exposure induces chronic PD-L1 
expression, dampening T-cell activity and fostering immune 
evasion [170]. Thus, IFN-γ signaling exerts a dual influence: loss 
abrogates immune recognition and drives primary resistance, 
while persistent activation promotes adaptive resistance 
through PD-L1-mediated suppression.

Upregulation of immune checkpoint ligands by tumor 
cells: Tumor cells evade immune pressure by upregulating 
several inhibitory checkpoint ligands on their surface, 
effectively suppressing activation of the T-cells expressing 
cognate receptors (Figure 1.4). The expression of such ligands 
within the TME can quench immune effector functions, 
promote regulatory or suppressive subsets of cells, and allow 
the tumor to evade immune attack [172]. This mechanism is 
central to the processes of immune escape and contributes 
to both primary and acquired resistance to ICI [173]. PD-
L1 expression has been extensively studied as a predictive 
biomarker for response to PD-1/PD-L1 blockade across 
multiple cancer types, including melanoma, HNSCC, NSCLC, 
and TNBC [97,135,162,170,174]. Higher PD-L1 expression 
is generally associated with increased response rates to 
checkpoint inhibitors; however, substantial clinical benefit is 
also observed in PD-L1-negative tumors. This indicates that 
PD-L1 status is neither a sufficient nor necessary condition for 

therapeutic response [124,175]. The limitations of PD-L1 as a 
biomarker reflect tumor heterogeneity, emphasizing the need 
for additional predictive indicators beyond PD-L1 alone [174].

Beyond PD-L1, many tumors express ligands for other 
checkpoint receptors (Figure 1.4), for instance: LAG-3, T cell 
immunoglobulin and mucin-domain-containing-3 (TIM-3), 
T cell immunoreceptor with immunoglobulin and tyrosine-
based inhibitory motif domain (TIGIT) and V-domain Ig 
suppressor of T cell activation (VISTA) [176,177]. TIM3 interacts 
with several ligands, including galectin-9, phosphatidylserine, 
carcinoembryonic antigen-related cell adhesion molecule 
1 (CEACAM1), and high mobility group protein B1 (HMGB1), 
as well as HLA-B-associated transcript 3 (BAT3). LAG-3 binds 
fibrinogen-like protein 1 (FGL1), lectins galectin-3 (Gal-3), 
and lymph node sinusoidal endothelial cell C-type lectin 
(LSECtin). TIGIT interacts with CD155 (PVR) and CD112 (PVRL2) 
[178,179], expressed on tumor cells and competing with 
ligand-expressing APCs [180,181]. In melanoma [179] and 
HNSCC [182], the CD155/TIGIT axis is prominent, contributing 
to ICI resistance despite highly immune TME. TNBC cells 
express CD155 and CD112 as well, promoting TIGIT-mediated 
immunosuppression, which is linked to poor prognosis with 
anti-PD-1 therapy [183].

Tumor-intrinsic mechanisms can include PD-L1-enriched 
exosomes, which extend immunosuppression systemically 
by inhibiting T-cell activation, promoting apoptosis, and 
enhancing Treg function [184]. A reduction in exosomal PD-
L1 during treatment correlates with improved responses, 
suggesting its potential as a liquid biopsy biomarker [184]. 

Oncogenic pathway activation: Oncogenic signaling 
pathways play a central role in immune evasion and ICI 
resistance across melanoma, HNSCC, and TNBC. Activation 
of PI3K/AKT/mammalian target of rapamycin (mTOR), WNT/
β-catenin, and mitogen-activated protein kinase (MAPK) 
pathways reshapes the TME and suppresses immune 
infiltration (Figure. 1.5) [185–188]. However, these pathways 
are often characterized by complex feedback loops and 
compensatory mechanisms that sustain tumor growth and 
contribute to immune escape [189–191]. Current efforts focus 
on optimizing drug combinations, dosing schedules, and 
patient selection to maximize therapeutic benefit. Rationally 
combining these pathway inhibitors with ICIs represents a 
promising approach to overcome immune exclusion and 
treatment resistance [192,193].

Aberrant PI3K/AKT/mTOR activation is common in TNBC 
and HNSCC, often resulting from PTEN loss or PI3K mutations 
[194,195]. This pathway supports tumor proliferation and 
immune escape by reducing CTL infiltration and enriching 
immunosuppressive myeloid populations [196]. Some PI3K/
AKT/mTOR inhibitors have demonstrated promising preclinical 
activity in breast cancer [197,198], but their therapeutic 
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efficacy has been partially limited by acquired resistance, as 
well as by substantial adverse effects [199]. Preclinical and 
clinical studies show that combining PI3K inhibitors with 
ICIs improves antitumor responses in melanoma and TNBC 
[200,201], with ongoing trials investigating similar strategies 
in HNSCC [24]. While pharmacological AKT inhibition showed 
no impressive effects, genetic silencing of all AKT paralogs 
triggered mTOR-dependent melanoma cell death, rescuable 
by kinase-active AKT1 [191]. A novel dual PI3K/mTOR inhibitor 

suppressed both proliferation and growth of MAPK inhibitor-
resistant melanoma in vitro and in vivo, showing promise as 
a well-tolerated therapy for frontline and resistant disease 
[202,203]. Key strategies also include leveraging pan-PI3K 
inhibitors for broader pathway targeting in HNSCC, as 
well as incorporating epigenetic modifiers such as histone 
deacetylase inhibitors (HDACi) or DNA methyltransferase 
inhibitors to disrupt alternative signaling routes and overcome 
compensatory resistance mechanisms [195,196].

Figure 1. Tumor-intrinsic mechanisms of resistance to ICIs. (1) Variations in tumor mutational burden (TMB) and neoantigen load 
limit tumor recognition and reduce immune cell infiltration; (2) loss of antigen processing and presentation machinery, including MHC 
I, β2-microglobulin (B2M), and transporter-associated antigen processing (TAP1/2), impairs T-cell–mediated cytotoxicity; (3) defects in 
IFN-γ signaling, such as JAK1/2 mutations or STAT1 inactivation, blunt immune activation and antigen presentation; (4) overexpression 
of inhibitory checkpoint ligands (PD-L1, galectin-9, CEACAM1, FGL1, CD155, CD112, among others) dampens T-cell function; and (5) 
activation of oncogenic pathways (PI3K/AKT/mTOR, WNT/β-catenin, MAPK) promotes immune exclusion and supports the survival of 
immunosuppressive cells.
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Aberrant WNT/β-catenin signaling is not only a key 
mechanism of tumorigenesis but a significant modulator 
of TME, contributing to immune exclusion and resistance to 
ICIs across several cancers [190,204]. This phenomenon has 
been extensively demonstrated in melanoma and is gaining 
recognition in HNSCC and TNBC [42,205]. In preclinical models 
and clinical settings, the WNT/β-catenin pathway prevents 
dendritic cell and T cell infiltration, generating a "cold" immune 
TME and driving resistance to PD-1/CTLA-4 blockade [41] 
(Figure 1.5). Mechanistically, β-catenin activation suppresses 
CCL4, impairing the recruitment of CD103+ dendritic cells 
essential for CD8+ T-cell priming [188]. The WNT/β-catenin 
pathway contributes to the preservation or expansion of Tregs 
via IL-10 release, thereby reinforcing an immunosuppressive 
TME [206]. In TNBC, characterized by a generally "cold" 
immune landscape, the WNT/β-catenin pathway's influence 
on immune exclusion is significant, making it an essential 
target for therapeutic intervention. Furthermore, the interplay 
between the WNT/β-catenin pathway and other metabolic 
pathways, such as those involving IDO and adenosine, can 
further solidify an immunosuppressive microenvironment, 
presenting additional challenges for immune cell function in 
the face of ICI treatment [207].

Mutations in the MAPK pathway (e.g., BRAF-V600E in 
melanoma, diverse mutations in HNSCC) contribute to 
ICI resistance via cytokine induction, diminished antigen 
presentation, and expansion of regulatory cells [192,208]. In 
melanoma, acquired resistance to MAPK-targeted therapy 
is associated with decreased MHC-I expression, reduced 
T-cell infiltration, and diminished immunotherapy efficacy 
through IL-6/IL-10-mediated suppression and Treg expansion 
[209,210]. In contrast, HNSCC displays a more nuanced 
signaling context, where some MAPK-mutant tumors exhibit 
better CD8+ T-cell infiltration and improved ICI outcomes. In 
TNBC, MAPK dysregulation similarly contributes to immune 
escape, limiting responses to combination therapy [211]. 

2. Tumor-extrinsic resistance mechanisms

The TME is highly heterogeneous, consisting of malignant 
cells, immune populations, stromal elements, vasculature, 
and extracellular matrix. Emerging evidence highlights the 
complex crosstalk among these components critically shaping 
immunosuppression, remodeling anti-tumor immune 
responses, and dictating therapeutic sensitivity [25,212]. 
Resistance mechanisms within the TME arise from both 
cellular and non-cellular factors that suppress local immunity, 
including expansion of inhibitory immune populations, 
physical exclusion of effector T cells, and metabolic constraints 
that induce T-cell exhaustion [213] (Figure 2).

Immunosuppressive cell populations: Resistance across 
solid tumors is reinforced by immunosuppressive subsets 

such as Tregs, MDSCs, and M2-polarized tumor-associated 
macrophages (TAMs), which are key mediators in melanoma, 
HNSCC, and TNBC (Figure 2.1). These cells inhibit cytotoxic 
T-cell activity by secreting IL-10, transforming growth factor-
beta (TGF-β), and other suppressive molecules [214,215]. 
In melanoma, tumors arise within a “hot” immune milieu 
enriched in CD8+ T cells [216] (Figure 2.1). However, abundant 
Tregs blunt T cell cytotoxic activity, enforce tolerance, and 
promote therapy resistance. In HNSCC, the immune landscape 
is shaped by etiological diversity. HPV+ tumors display dense 
T-cell infiltration with frequent Tregs and stromal activation 
[217], whereas tobacco-associated HNSCC exhibits immune 
desertification and poor ICI responses [109,171]. Across both 
HPV+ and HPV- tumors, cytotoxic CD56dim NK cells, though 
abundant, are suppressed by KIR signaling [111]. HPV+ tumors 
also exploit E6/E7 oncoproteins to impair antigen presentation, 
dampen NK activity, and reprogram cytokine signaling 
[13,218]. In contrast, TNBC is often immunologically "cold" 
and characterized by scarce CTLs and an enrichment with 
immunosuppressive MDSCs and M2-polarized macrophages, 
which may limit ICI responsiveness [219]. Within these tumor 
contexts, several immunosuppressive cell populations are 
central drivers of immunotherapy resistance [214,215]. 

Cytokine/chemokine dysregulation: Cytokine dysregulation 
in the TME is typically initiated by oncogenic signaling, 
hypoxia-induced stress responses, and innate immune 
activation, which together establish self-sustaining cytokine 
loops that shape an immunosuppressive microenvironment 
(Figure 2.2). IL-6 drives MDSC expansion via STAT3 and IDO 
signaling [220], skewing T cell differentiation toward Th17 
phenotypes [221]. Tumor necrosis factor-alpha (TNF-α) 
signaling, despite activation of CTL, enhances MDSC-
mediated immunosuppression by promoting the survival and 
suppressive function of these cells [222]. TGF-β reprograms 
immune and stromal metabolism, promoting epithelial-to-
mesenchymal transition (EMT) [223]. Together, IL-6, TNF-α, 
and TGF-β drive T-cell exhaustion, enhance the expression 
of PD-1 and CTLA-4, expand Tregs, and impair NK activity 
[221,223,224]. These cells subsequently release inhibitory 
mediators that block effector T-cell infiltration into the tumor, 
establishing a suppressive niche and fostering immune 
exclusion [225,226]. 

Stromal and metabolic barriers: Spatial heterogeneity 
across melanoma, HNSCC, and TNBC creates barriers to 
immune infiltration and ICI efficacy (Figure 2.3). Beyond 
purely “hot” or “cold” classifications, many solid tumors 
exhibit immune-excluded phenotypes, characterized by 
immune cells—especially CD8+ T cells—localized to the 
tumor periphery or stroma but unable to penetrate the tumor 
parenchyma [227,228]. This spatial immune segregation, 
frequently driven by dense extracellular matrix (ECM) 
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deposition, cancer-associated fibroblast (CAF) activation, and 
TGF-β–mediated signaling, creates physical and biochemical 
barriers that prevent effective cytotoxic engagement [226]. 

Such immune-excluded environments are especially 
prominent in TNBC, where stromal TGF-β signaling and 
myofibroblast expansion contribute to peripheral T-cell 
trapping and therapeutic resistance [229]. Similarly, subsets 
of HNSCC show collagen crosslinking and stromal niche 
formation driven by CAFs, contributing to immune exclusion 
[230]. Together, these features underscore that stromal 
remodeling, not only cellular immunosuppression, represents 
a complementary axis of immune evasion across solid tumors.

Dense desmoplastic stroma, enriched in CAFs, collagen, and 
hyaluronan, further restricts T-cell infiltration in HNSCC and 
TNBC [231,232]. CAF-derived IL-6 and JAK2/STAT3 activation 
promote fibroblast proliferation, Th17 polarization, and 
immunosuppressive cytokine release [218,233]. In melanoma, 
resistance is compounded by metabolic rewiring, including 
activation of indoleamine 2,3-dioxygenase (IDO) and 
adenosine accumulation, which suppresses T- and NK-cell 
function and blunts PD-1 blockade efficacy [231,233,234]. 

Epithelial–mesenchymal transition (EMT) remodeling 
further strengthens stromal barriers (Figure 2.3), particularly 
in HNSCC and TNBC, where TGF-β, IL-6, Wnt, Notch, and 

Figure 2. Tumor-extrinsic mechanisms of resistance to ICIs. (1) Recruitment of immunosuppressive cell populations (Tregs, MDSCs, 
and M2 macrophages) suppresses T-cell cytotoxicity and limits effective anti-tumor responses; (2) dysregulated cytokine and chemokine 
signaling (e.g., TGF-β, TNF-α, IL-6, IL-10) enhances immune suppression and reinforces T-cell dysfunction; (3) stromal and metabolic 
alterations—including hypoxia, abnormal vasculature, and extracellular matrix (ECM) remodeling—create physical barriers to immune cell 
infiltration and promote tumor immune escape; and (4) upregulation of alternative immune checkpoints (LAG-3, TIM-3, TIGIT, VISTA) drives 
T-cell exhaustion and limits response to PD-1/PD-L1 blockade.
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hypoxia pathways collectively drive immune exclusion and 
therapeutic resistance [235,236]. Hypoxia, a common feature 
across all three cancers, stabilizes hypoxia-inducible factor-1α 
(HIF-1α), thereby promoting angiogenesis, PD-L1 expression, 
recruitment of suppressive cells, and activation of metabolic 
checkpoints such as IDO and adenosine [237–239] (Figure 
2.3). 

HNSCC and TNBC are particularly hypoxic due to dense 
stroma and high metabolic demand, whereas melanoma 
harbors localized hypoxic niches driving immune escape 
[240–242]. In HNSCC, hypoxia is particularly pronounced 
due to the high metabolic demand of rapidly proliferating 
tumor cells and extensive stromal fibrosis. Hypoxia in HNSCC 
promotes angiogenesis through vascular endothelial growth 
factor (VEGF), induces PD-L1 upregulation, and facilitates 
recruitment of MDSCs and TAMs, thereby driving tumor 
immune evasion [233]. In TNBC, elevated HIF-1α enhances 
VEGF secretion and stromal fibrosis, fostering metastasis and 
resistance [243]. Accumulation of lactate and adenosine under 
hypoxic stress also suppresses T and NK cell function, limiting 
ICI efficacy [244]. In melanoma, although global hypoxia 
is less pronounced, localized niches activate CCL28 and 
CXCL12, attracting Tregs and MDSCs and reinforcing immune 
suppression [245]. Collectively, stromal remodeling, metabolic 
reprogramming, and hypoxia form an interlinked network 
that shapes the TME, restricts immune infiltration, and drives 
resistance to ICI therapies across melanoma, HNSCC, and 
TNBC.

Alternative immune checkpoints: Beyond PD-1 and CTLA-
4, several alternative inhibitory pathways—including TIM-3, 
LAG-3, TIGIT, and VISTA—contribute to sustained immune 
exhaustion and tumor immune evasion [172,246]. These 
pathways signal through unique mechanisms to suppress T 
cell proliferation and cytokine production, fostering a state 
of chronic exhaustion and reduced cytotoxic activity. The 
engagement of these alternative checkpoints as compensatory 
mechanisms in response to ICI therapy underscores the 
development of secondary acquired resistance.

TIM-3, often co-expressed with PD-1 on T cells, NK cells, and 
Tregs, suppresses effector functions and is associated with 
poor survival [247,248]. Dual blockade of PD-1 and TIM-3 has 
shown potential to restore T-cell activity [249].

LAG-3 is widely expressed on activated and exhausted T cells, 
NK cells, B cells, and plasmacytoid dendritic cells. It synergizes 
with PD-1—particularly in melanoma and HNSCC—leading 
to profound T-cell exhaustion and resistance to anti-PD-1/
PD-L1 therapy. In TNBC, LAG-3 expression demonstrates a 
context-dependent role, but combined targeting of PD-1 and 
LAG-3 offers promise for overcoming immunosuppression 
[181,250].

TIGIT interacts with CD155 or CD112 to suppress CTL and 
NK cell activity, enhancing IL-10 secretion and Treg expansion 
[251]. High TIGIT levels predict resistance in melanoma and 
TNBC, and TIGIT inhibition can enhance responses to PD-1 
blockade [180].

VISTA, expressed on myeloid cells and T cells, dampens 
T-cell activation and promotes immunotherapy resistance, 
particularly in inflamed tumors such as HNSCC and TNBC 
[252,253]. Collectively, these alternative checkpoints interact 
with cytokine networks and stromal barriers, establishing a 
multifaceted immunosuppressive tumor microenvironment. 
Their cooperative roles support clinical investigation of dual or 
triple checkpoint blockade strategies to overcome resistance 
[177,249].

3. Systemic mechanisms

Resistance to ICIs is shaped by systemic host determinants 
[19,20,254]. Host-related factors, including chronic 
inflammation, nutritional and metabolic status, and the 
microbiome, modulate both intrinsic (mutational landscape, 
cytokine signaling, and metabolism) and tumor extrinsic 
mechanisms (immune cell trafficking and effector function 
within the TME) [233,255]. These systemic influences differ in 
relative importance across melanoma, HNSCC, and TNBC, yet 
collectively define immune competence, treatment tolerance, 
and the durability of anti-tumor responses.

Chronic inflammation and comorbidities: Systemic 
inflammation, driven by smoking, alcohol use, obesity, chronic 
infections, and aging, impairs antigen presentation, blunts 
T-cell priming, accelerates immune senescence, and thereby 
reduces ICI efficacy [256]. In melanoma, chronic ultraviolet-
driven inflammation and age-related immune-senescence 
reduce naive T-cell pools and cytokine fitness, limiting 
response durability in older or frail patients. Body-composition 
metrics in melanoma patients further forecast ICI outcomes: 
low skeletal muscle index, high subcutaneous adipose tissue 
density, and sarcopenia correlate with inferior progression-
free and overall survival on ICI therapy. Conversely, better 
pre-diagnosis diet quality (e.g., higher Healthy Eating Index) 
has been linked to thinner primary tumors at presentation, 
underscoring the role of modifiable host determinants in 
shaping immunity.

In HNSCC, tobacco and alcohol exposure drive inflammation, 
myeloid skewing, and frailty, all of which correlate with 
inferior ICI outcomes [257]. HPV+ HNSCC is generally more 
immunogenic, yet systemic comorbidities and malnutrition 
remain detrimental. For instance, cachexia and sarcopenia 
impose substantial metabolic stress that impairs T-cell priming 
and effector cytokine production [258,259]. Dysphagia, 
mucositis, and treatment-related catabolism frequently 
result in weight loss and immune dysfunction. Validated 
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tools such as patient-generated subjective global assessment 
(PG-SGA) link poor nutritional status to advanced stage and 
worse survival; structured interventions (dietary counseling, 
prophylactic feeding tubes) mitigate severe toxicities and 
preserve immune competence during chemoradiation [260].

In TNBC, systemic inflammation is often linked to obesity, 
insulin resistance, and adipokine dysregulation (elevated 
leptin, reduced adiponectin), which increase circulating IL-6 and 
TNF-α, promote myelopoiesis, and skew toward suppressive 
myeloid phenotypes [261,262]. Systemic metabolism strongly 
influences TNBC aggressiveness. Preclinical studies show 
that Western-style diets accelerate tumor growth and blunt 
chemotherapy, whereas fasting-mimicking or ketogenic 
diets enhance immune fitness and prolong survival in murine 
TNBC [263]. Clinically, lower circulating glucose has been 
associated with improved outcomes in some TNBC cohorts 
[264], consistent with tumor–immune metabolic competition. 
Nutritional and metabolic interventions are now being 
evaluated as adjunctive strategies to potentiate ICI efficacy 
[260].

Microbiome dysbiosis: Melanoma and HNSCC are uniquely 
shaped by their interaction with microbiota, given their 
interface with heavily colonized barrier surfaces—the skin 
and oral cavity, respectively—which profoundly influence 
tumor-immune dynamics. The distinct microbial ecology 
at these sites plays a pivotal role in local immunity [265]. 
Microbial metabolites, particularly short-chain fatty acids, 
modulate chemokine production (CCL5, CXCL10), enhance 
T-cell metabolism, and promote intra-tumoral trafficking 
[266]. In contrast, dysbiosis impairs antigen presentation, 
reduces CD8+ T cell activation, and promotes expansion of 
Tregs, creating an environment conducive to immune evasion 
[267]. 

In melanoma, multiple studies demonstrate that fecal 
microbiota transplantation (FMT) from ICI responders into 
non-responders restores intra-tumoral immune infiltration 
and improves clinical outcomes, with OSR approaching 65%, 
including 20% complete responses [268–270]. In HNSCC, the 
oral microbiome exerts both cancer- and therapy-relevant 
effects [271,272]. In resected HNSCC patients, a shift toward 
health-associated taxa (e.g., Streptococcus, Rothia) and 
away from Capnocytophaga, Prevotella, and Leptotrichia 
correlated with improved three-year disease-specific survival 
[272,273]. However, direct evidence linking oral or gut 
microbiome modulation to ICI efficacy in HNSCC remains 
limited and warrants prospective studies [274].  In TNBC, 
baseline gut microbial diversity correlates with longer PFS 
in patients treated with atezolizumab plus chemotherapy 
[275]. Preclinical TNBC models further suggest that restoring 
beneficial microbial metabolites, such as branched-chain 
amino acids, enhances PD-1-mediated immunity [276]. 

Collectively, the microbiome functions both as a biomarker 
of ICI benefit and as a modifiable co-therapeutic target across 
melanoma, HNSCC, and advanced TNBC.

Conclusions and Lessons from a Decade of Forefront 
Therapy 

A decade of clinical experience with ICI has fundamentally 
shifted the therapeutic paradigm in cancer, particularly for 
melanoma, HNSCC, and TNBC. These advances have redefined 
survival outcomes and established immunotherapy as a 
core pillar of modern oncology. However, the management 
of immune-related adverse events (irAEs) remains a critical 
challenge [277]. irAEs can affect virtually any organ system—
most commonly the skin, gastrointestinal tract, liver, and 
endocrine glands—and range from mild to life-threatening 
[278]. Severe, multi-organ toxicities limit the broader 
application of ICIs, particularly in frail or comorbid patients. 
Several prospective clinical strategies are under active 
investigation—notably IL-6/IL-6R blockade (e.g., tocilizumab) 
and TNF-α or gut-selective agents (infliximab, vedolizumab) 
for severe or steroid-refractory irAEs, as well as targeted 
approaches such as abatacept, JAK inhibitors, IL-1 blockade, 
and microbiome modulation—which aim to reduce toxicity 
severity and dependence on high-dose corticosteroids while 
maintaining efficacy [221–226]. Early clinical signals are 
encouraging, but larger randomized studies with survival and 
quality-of-life endpoints are required to establish standard 
mitigation strategies [279]. 

Recent clinical and translational research increasingly 
emphasizes combination strategies that concurrently target 
multiple resistance mechanisms (Tables 2 and 3). Key 
developments include dual checkpoint blockade, targeting 
PD-1 together with LAG-3 [280], TIGIT [281], or other inhibitory 
receptors [282], which has demonstrated efficacy in treating 
refractory tumors. Neoadjuvant immunotherapy, involving 
administration of ICIs before surgical intervention, has shown 
improved pathological responses and survival outcomes 
in melanoma and TNBC, offering insight into early tumor–
immune dynamics [50,283]. 

Novel immunomodulatory agents such as vidutolimod (TLR9 
agonist) [284] and WTX-124 (tumor-activated IL-2 prodrug) 
[285] are designed to enhance both innate and adaptive 
immunity while minimizing systemic toxicity. Adoptive 
T-cell therapies, particularly TIL products such as lifileucel 
(Amtagvi™), along with personalized cancer vaccines, offer 
promising avenues for patients with ICI-refractory disease 
[286–288]. Similarly, antibody–drug conjugates (ADCs) such 
as sacituzumab govitecan, a Trop-2-directed ADC, have shown 
substantial benefit in heavily pretreated TNBC [289]. These 
targeted therapies address tumor-specific vulnerabilities and 
contribute to a multi-modal framework for overcoming tumor 
heterogeneity and resistance.
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Table 3. Anti-PD-1 combination strategies with immune-stimulating agents to combat resistance to ICI.

Target/Agent Mechanism of Action Clinical Trial 
Phase Status

Tumor Type(s) Key Outcome References

EGFR inhibitors Inhibition of EGFR promotes 
antigen presentation and 
enhances immune response 
to tumor cells

Phase II/III HPV-related 
cancers

Improved ORR and overall 
survival in combination with 
PD-1 inhibitors

[68,291]

STAT3 inhibitors Blockade of STAT3 suppresses 
an immunosuppressive 
transcription factor

Phase I Advanced Solid 
Tumors

Tolerable safety profile; 
preliminary anti-tumor activity

[292]

CXCR2 inhibitors Blockade of the chemokine 
receptor CXCR2 (primarily 
binds IL-8) reduces neutrophil 
recruitment

Phase I/II Solid tumors Combination with 
durvalumab did not improve 
ORR and had high adverse 
event rates. 

[293]

IDO1 inhibitors Blockade reduces 
immunosuppressive 
tryptophan metabolism 
and restores T and NK cell 
proliferation.

Phase I–III Melanoma, Solid 
Tumors

Epacadostat + 
pembrolizumab: safe but 
failed phase III melanoma trial. 
Navoximod + atezolizumab: 
phase I ongoing 

[207]

NKG2A inhibitors Blockade restores CD8+ T cell 
and NK cell function.

Phase II HNSCC Combination with 
durvalumab + SOC did not 
improve PFS; results are 
pending.

[294]

B7-H3 inhibitors Blockade enhances CD8+ T 
cell–mediated anti-tumor 
activity.

Phase II/III Solid Tumors Combination with 
retifanlimab improved ORR; 
acceptable safety profile. 

[55]

VEGF inhibitors Blockade of VEGF signaling 
reduces tumor angiogenesis 
and alleviates hypoxia-driven 
immunosuppression.

Phase III Endometrial, 
Renal, Solid 
Tumors

Lenvatinib + pembrolizumab 
did not improve survival 
outcomes [126,127].

[295,296]

OX40 agonists Costimulatory receptor 
activation enhances T cell 
proliferation and survival.

Phase I/II Solid Tumors Well tolerated; modest activity 
as monotherapy; combination 
trials with PD-1 ongoing.

[297]

4-1BB (CD137) 
agonists 

Costimulatory receptor 
activation enhances T and NK 
cell activation.

Phase I/II Solid Tumors Some clinical activity; 
hepatotoxicity limited 
development; newer agents in 
trials with PD-1 inhibitors.

[298]

TLR agonists Toll-like receptor activation 
stimulates innate immunity 
and dendritic cell function.

Phase I/II Melanoma, 
HNSCC

Early signals of efficacy in 
combination with PD-1 
inhibitors.

[299]

STING agonists Activates STING pathway, 
inducing type I interferons 
and innate immune activation.

Phase I Solid Tumors, 
Lymphoma

Safe but limited responses 
as monotherapy; PD-1 
combinations under 
investigation.

[300]

CSF1R inhibitors Reprograms tumor-
associated macrophages from 
immunosuppressive to pro-
inflammatory phenotype.

Phase I/II Pancreatic and 
Solid Tumors

Combination with nivolumab 
showed limited clinical 
activity.

[301]

This table summarizes investigational approaches combining PD-1 inhibitors with other immune-modulating therapies. Each entry 
highlights the molecular target, its immunological mechanism of action, and the clinical outcome reported to date, ranging from early-
phase safety and efficacy signals to negative or inconclusive phase II results.
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In addition to these approaches, next-generation 
immunotherapies are being developed to further enhance 
clinical outcomes [290]. Oncolytic viruses represent a promising 
avenue for overcoming resistance to ICIs. The FDA-approved 
talimogene laherparepvec (T-VEC), a genetically modified 
herpes simplex virus, has demonstrated durable responses 
and improved overall survival in advanced melanoma by 
promoting tumor lysis and systemic immune activation [302]. 
Ongoing trials are evaluating T-VEC in combination with ICIs 
and radiotherapy to further augment antitumor immunity 
[303]. In HNSCC, clinical studies are investigating intratumoral 
viral delivery and combination regimens, particularly in HPV-
positive or immunologically “cold” tumors where viral priming 
may enhance immune infiltration [304]. For TNBC, oncolytic 
HSV and reoviruses are under clinical evaluation for their ability 
to induce immunogenic cell death and reshape the TME [305]. 

Epigenetic reprogramming provides an additional avenue to 
overcome immune resistance. In melanoma, inhibitors of DNA 
methyltransferases (DNMTs) and HDACs can restore antigen 
presentation, reactivate silenced immune genes, and enhance 
checkpoint blockade efficacy [306,307]. In HNSCC and TNBC, 
epigenetic therapies are under investigation to reverse tumor-
induced immunosuppression and restore effective immune 
signaling, potentially sensitizing tumors to chemotherapy 
and ICIs [308,309]. Moreover, targeting DNA damage response 
pathways has emerged as a complementary approach. 
PARP inhibitors, such as Olaparib, have been approved for 
BRCA-mutated TNBC [310], with ongoing trials exploring 
combinations with ICIs, AKT inhibitors, and ADC [311–313]. 

The integration of these next-generation therapies with 
current ICIs underscores a dynamic shift towards personalized 
cancer treatments. Strategies such as optimizing nutrition, 
preserving metabolic and immune fitness, and modulating the 
microbiome through dietary fiber, pre/probiotics, or FMT are 
being investigated as adjunctive therapies to enhance immune 
competence, reduce toxicities, and extend the durability of 
checkpoint blockade [266,314]. Recent progress in single-cell 
transcriptomics, spatial multi-omics, and AI-assisted response 
prediction is also refining patient selection and guiding 
personalized combinations [315–318].

Collectively, these developments highlight a translational 
shift toward precision immunotherapy—integrating genomic, 
metabolic, and immunologic profiling to tailor treatments while 
mitigating toxicity. Lessons from the past decade underscore 
that durable benefit from ICIs requires not only overcoming 
resistance but also mastering the balance between immune 
activation and immune tolerance, ensuring that the next 
generation of immunotherapies achieves maximal efficacy 
with minimal harm.
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