SCIENTIFIC
[Pt | i
Journal of Cellular Inmunology Review Article

Mechanisms and Therapeutic Strategies to Overcome Immune
Checkpoint Inhibitor Resistance in Melanoma, Head and Neck,
and Triple-Negative Breast Cancers

] Cell Immunol. 2025;7(4):146-172.

Iryna Voloshyna'**, Apoorvi Tyagi'*, Stanzin Idga', Nicole Wang', Tazrif Amin', Madonna Hanna', Adil Mukhtar’,
Francesca Torres', Farah Kabir', Dominic Florian', Chloe Wang', Yury Patskovsky"?, Michelle Krogsgaard"*

'"Laura and Isaac Perlmutter Cancer Center at NYU Langone Health, New York, NY, USA
*Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
“These authors have contributed equally

*Corresponding Author: Michelle Krogsgaard, Michelle. Krogsgaard@nyulangone.org
Received date: September 11, 2025, Accepted date: October 22, 2025

Citation: Voloshyna I, Tyagi A, Idga S, Wang N, Amin T, Hanna M, et al. Mechanisms and Therapeutic Strategies to Overcome
Immune Checkpoint Inhibitor Resistance in Melanoma, Head and Neck, and Triple-Negative Breast Cancers. ] Cell Immunol.
2025;7(4):146-172.

Copyright: © 2025 Voloshyna I, et al. This is an open-access article distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author
and source are credited.

Abstract

Immunotherapy, particularlyimmune checkpoint inhibitors (ICls), has revolutionized cancer treatment by harnessing the hostimmune system
to target malignancies. Melanoma, head and neck squamous cell carcinoma (HNSCC), and triple-negative breast cancer (TNBC) were among
the first solid tumors to gain regulatory approval for ICls due to their immunogenicity and unmet clinical needs. Melanoma exemplifies the
success of ICl therapy, with durable responses driven by its high mutation burden and neoantigen landscape, yet both primary and acquired
resistance remain major challenges. In contrast, HNSCC demonstrates clinically meaningful but modest responses in the context of a highly
immunosuppressive tumor microenvironment, while TNBC derives limited benefit from ICl, often requiring combination strategies to achieve
efficacy. Resistance to ICls arises from complex tumor-intrinsic, microenvironmental, and systemic mechanisms that collectively undermine
effective anti-tumor immunity. This review highlights both shared and cancer-specific mechanisms of ICl resistance across melanoma, TNBC
and HNSCC. We also discuss emerging strategies, including combination therapies, neoantigen-based vaccines, adoptive T cell therapies,
and precision oncology approaches, to overcome resistance and improve clinical outcomes. Together, these insights provide a framework for
optimizing immunotherapy and advance durable benefit in these challenging malignancies.
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Introduction

Immunotherapy has fundamentally transformed modern
oncology, offering durable clinical responses and opening
new therapeutic avenues for a wide range of malignancies. By
harnessing the host immune system to target and eliminate
cancer cells, therapies such as immune checkpoint inhibitors
(ICls) have achieved breakthroughs in cancers previously
considered treatment-refractory [1,2]. The approval of

ipilimumab, a cytotoxic T-lymphocyte-associated protein 4
(CTLA-4) antibody, for advanced cutaneous melanoma in
2011 marked the dawn of a new era in cancer treatment [3].
Subsequent regulatory approvals of programmed death-1
(PD-1) and its ligand (PD-L1) inhibitors have rapidly expanded
the impact of ICls to multiple solid tumors, including head and
neck squamous cell carcinoma (HNSCC) and triple-negative
breast cancer (TNBC) [2,4-6]. These cancers remain at the
forefront of clinical and translational immuno-oncology.
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Melanoma, HNSCC, and TNBC exemplify both the successes
and limitations of current immunotherapeutic strategies. In
melanoma, historically dismal outcomes with chemotherapy
or interleukin-2 (IL-2) therapy have been replaced by
unprecedented long-term survival in a subset of patients,
driven by its high tumor mutational burden, abundant
neoantigen repertoire, and a tumor microenvironment
conducive to T-cell infiltration [7-9]. Despite these advances,
most patients ultimately develop primary or acquired
resistance (relapse after initial benefit) [10-12]. Similarly, ICls
have reshaped the therapeutic landscape in HNSCC, a cancer
often associated with oncogenic viral infection, tobacco
and alcohol exposure, and often marked by a profoundly
immunosuppressive tumor microenvironment (TME) [13,
14]. Although PD-1 blockade has provided meaningful
improvements in recurrent or metastatic disease, only a subset
of patients experiences durable benefit, reflecting resistance
mechanisms driven by tumor heterogeneity, immune
exclusion, and adaptive immunosuppression [14]. TNBC, the
most aggressive breast cancer subtype characterized by the
absence of estrogen receptor (ER), progesterone receptor (PR),
and human epidermal growth factor receptor 2 (HER2), has
likewise benefited from ICl-based combinations. The addition of
pembrolizumab to chemotherapy has improved outcomes in
both early-stage and metastatic settings [15-17]. Nevertheless,
durable responses remain uncommon, underscoring the need
to better understand tumor-immune escape and to identify
strategies that extend therapeutic benefit.

Resistance across these cancers, whether primary (non-
response) or acquired (relapses following initial response),
emerges from a multifaceted interplay of tumor-intrinsic
factors (e.g., antigen-presentation loss, signaling pathway
alterations) and  microenvironmental  barriers  (e.g.
immunosuppressive cells, stromal remodeling) and systemic
host-related constraints (e.g. metabolism, microbiome) that
collectively blunt effective antitumor immunity [18-20].

This review examines melanoma, HNSCC, and TNBC as

model immunogenic epithelial cancers responsive to ICl. We
highlight both convergent and cancer-specific resistance
mechanisms, explore their clinical implications, and discuss
emerging therapeutic strategies—including rational ICl
combinations, neoantigen-targeted vaccines, adoptive
T-cell therapies, and precision-based patient selection. By
integrating current insights, we aim to provide a framework
for overcoming resistance and optimizing immunotherapy
outcomes for these difficult-to-treat malignancies.

Current Clinical Landscape of Immunotherapy and ICI
Resistance

Over the past decade, immune checkpoint blockade has
become a standard of care across multiple malignancies.
ICls function by removing the inhibitory signals on T-cell
activity, most prominently through pathways involving CTLA-
4 (CD152) [21], PD-1 (CD279)/PD-L1 (CD274) [22]. While the
number of newly identified immune checkpoint molecules
is rapidly expanding, the clinically approved portfolio of ICls
remains limited, reflecting the complex biology of checkpoint
regulation [23] and the highly variable efficacy of these agents
across tumor types [24]. This variability is strongly influenced
by tumor-intrinsic biology and the characteristics of the tumor
microenvironment (TME) (Table 1).

Melanoma

Among solid tumors, cutaneous melanoma shows the
highest responsiveness to ICls, in contrast to acral and
uveal melanomas, which are generally refractory to these
therapies [25-28] (Table 1). Prior to ICls, metastatic disease
was associated with a median survival of less than one
year, with minimal benefit from chemotherapy or high-
dose interleukin-2 [29]. The introduction of anti-CTLA-4
inhibitor (ipilimumab) and PD-1 inhibitors (nivolumab,
pembrolizumab) transformed outcomes for advanced disease
[25] (Table 2). Landmark clinical trials, including MDX010-20
[30], KEYNOTE-006 [31], and CheckMate-067 [32], not only

Table 1. Shared and cancer-specific features shaping ICl response in melanoma, HNSCC, and TNBC.

T Melanocyte lineage antigens
T Immune infiltration

Melanoma HNSCC TNBC
Common resistance Impaired antigen presentation (B2M, MHCI mutations)
mechanisms Defects in the IFN-y signaling pathway (JAK1/2 mutations)
Activated oncogenic pathways
Suppressive TME—enriched in Treg, MDSCs, and TAMs
Unique cancer features T UV TMB and neoantigen load HPV+ (E6/E7) and HPV- subtypes ! TMB

Tobacco-related mutations and
neoantigen landscape

Unique TME (TNK-cell infiltration
(CD56dim)

Poor antigen presentation
Strong stromal barriers
T Immune “cold” TME

Response to ICI ~40-45% ORR

monotherapy

~15-20% ORR

~5-20% ORR
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Table 2. Key clinical trials establishing ICls as a standard of care in melanoma, HNSCC, and TNBC.

Trial Number Treatment Subject Reference
Melanoma
NCT03396952 Pembrolizumab + Ipilimumab + High-dose Aspirin Advanced Metastatic Melanoma (471
NCT01844505 Nivolumab or Nivolumab + Ipilimumab vs. Ipilimumab Advanced Melanoma [48]
Alone
NCT03470922 Relatlimab + Nivolumab vs. Nivolumab Alone Advanced Melanoma [49]
NCT04949113 Neoadjuvant Ipilimumab + Nivolumab vs. Standard Stage lll Melanoma [50]
Adjuvant Nivolumab
NCT04274816 Intradermal Tremelimumab (low dose) Early-stage Melanoma (Stage I-I1) [51]
NCT01866319 Pembrolizumab vs. Ipilimumab Metastatic Melanoma [31]
(KEYNOTE-006)
NCT00323206 Intratumoral IL-12 plasmid + electroporation Metastatic Melanoma (Phase | dose [52]
escalation)
NCT02275416 UV1 peptide vaccine + Ipilimumab Unresectable Metastatic Melanoma [53]
NCT02752074 (ECHO- | Epacadostat + Pembrolizumab vs. Pembrolizumab alone | Unresectable/Metastatic Melanoma [54]
301/ KEYNOTE-252)
NCT02475213 Enoblituzumab + Pembrolizumab Advanced Solid Tumors (including [55]
Melanoma)
NCT03693612 Feladilimab + Tremelimumab Advanced Solid Tumors (including [56]
(INDUCE-2) Melanoma)
NCT03776136 (LEAP- | Lenvatinib + Pembrolizumab Unresectable Stage lll/IV Melanoma with | [57]
004) progression on prior PD-1/PD-L1 therapy
NCT00179608 Lenalidomide + Dacarbazine Chemo-naive Metastatic Melanoma [58]
patients
NCT00864253 Nab-paclitaxel vs. Dacarbazine Metastatic Melanoma [59]
NCT03178851 Cobimetinib + Atezolizumab BRAF V600 WT Advanced Melanoma, [60]
post-PD-1 therapy
NCT00086489 Tremelimumab Advanced Melanoma [61]
NCT01656642 Atezolizumab + Vemurafenib + Cobimetinib Metastatic Melanoma (BRAF V600- [62]
mutant)
NCT00616564 ch14.18 + R24 antibodies combined with IL-2 Metastatic Melanoma (23 patients) and [63]
Sarcoma (4 patients)
NCT00631072 Autologous iNKT cell infusion Stage IlIB-IV Melanoma [64]
NCT04551352 TYRP1-TCB (RO7293583) — bispecific antibody targeting | Metastatic Melanoma (cutaneous, uveal, | [65]
TYRP1 + CD3 mucosal; TYRP1-positive)
Head and Neck Cancers
KEYNOTE-048 Pembrolizumab mono; Pembro + chemo + 5-FU Recurrent/Metastatic HNSCC [66]
Cetuximab + chemo + 5-FU
NCT02741570 Nivolumab + ipilimumab vs. EXTREME regimen Recurrent/Metastatic HNSCC [67]
NCT02252042 Pembrolizumab vs. methotrexate, docetaxel or Recurrent/Metastatic HNSCC [68]
cetuximab
NCT03342911 Nivolumab + carboplatin + paclitaxel Stage IlI-IV HNSCC [69]
] Cell Immunol. 2025
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NCT04282109 Nivolumab + paclitaxel Recurrent/Metastatic HNSCC [70]

NCT02179918 PF-05082566 + pembrolizumab (anti-PD-1) Advanced Solid Tumors [71]

NCT02110082 Urelumab (4-1BB agonist) and cetuximab Advanced/Metastatic HNSCC [72]

Triple Negative Breast Cancer

NCT02622074 Pembrolizumab + Chemotherapy as Neoadjuvant Early-Stage TNBC [73,74]

NCT04613674 Camrelizumab + Chemotherapy vs. placebo + Early or Locally Advanced TNBC [75]
chemotherapy

NCT03289819 Neoadjuvant Pembrolizumab/Nab-Paclitaxel Followed by | Early-Stage TNBC [76]
Pembrolizumab/Epirubicin/Cyclophosphamide

NCT02819518 Pembrolizumab combinations vs. Placebo + Previously untreated locally recurrent [77,78]
Chemotherapy Metastatic TNBC

NCT03487666 Nivolumab and Capecitabine combined vs. alone TNBC [79]

NCT03125902 Atezolizumab + Paclitaxel vs. Atezolizumab Placebo + Previously Untreated Inoperable Locally | [80]
Paclitaxel Advanced or Metastatic TNBC

NCT02413320 Carboplatin + Paclitaxel then Doxorubicin + Stage I-IIITNBC [81]
Cyclophosphamide vs. Carboplatin + Docetaxel

NCT02447003 Pembrolizumab Metastatic TNBC [82]

NCT01375842 Atezolizumab Metastatic TNBC [83]

NCT01772004 Avelumab Metastatic TNBC [84]

NCT02657889 Pembrolizumab + Niraparib Advanced/Metastatic TNBC [85]

NCT03330405 ICls+ Avelumab +Talazoparib Advanced TNBC [86]

NCT02555657 Pembrolizumab vs. TPCe Metastatic TNBC [87]

NCT02734004 Olaparib + Durvalumab Metastatic TNBC [88]

NCT01042379 Paclitaxel with or without Pembrolizumab +adjuvant Early-stage TNBC [89]
chemotherapy

NCT01633970 Nab-paclitaxel + Atezolizumab Metastatic TNBC [90]

NCT04129996 Angiogenesis inhibitor + Camrelizumab + Chemotherapy | Advanced immunomodulatory TNBC [91]

patients

NCT02425891 Nabpaclitaxel + Atezolizumab/Placebo Metastatic TNBC [92]

NCT02299999 Durvalumab vs. Chemotherapy Metastatic TNBC [93]

Trials are categorized by cancer type, treatment regimen, patient population, and corresponding reference. Included studies highlight

both monotherapy and combination strategies that have shaped current clinical practice and informed emerging approaches to overcome

resistance.

demonstrated objective response rates (ORRs) of ~40-45%
but also achieved unprecedented long-term survival, with
> 40% overall survival (OS) at 6.5 years in some cohorts [33].
Pembrolizumab has shown particularly strong activity in
desmoplastic melanoma, with ORRs approaching 89%, high
rates of pathological complete response (pCR), and extended
disease-free survival [34]. Combination regimens (ipilimumab
plus nivolumab) have further improved progression-free
survival (PFS) compared with monotherapy. For patients
with BRAF-mutant melanoma, the Phase Ill DREAMseq trial

established the sequencing of targeted therapy (dabrafenib/
trametinib) after combined ICI (nivolumab/ipilimumab) as the
preferred treatment strategy (Table 2), demonstrating a 30%
improvement in OS and a threefold improvement in PFS at 5
years compared with either therapy alone [35].

Despite these advances, resistance to ICl remains a significant
clinical challenge, presenting either as primary non-response
oracquired relapse. Approximately 55% of melanoma patients
have primaryresistancetoPD-1inhibitors,40%to CTLA-4+PD-1
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combination therapy, and 25% of initial PD-1 responders
acquire resistance within two years [36]. Mechanistic drivers
of resistance include loss of antigen-presentation [37],
defects in interferon-y (IFN-y) signaling [38,39], activation
of the WNT/B-catenin pathway [40-42], upregulation of
compensatory inhibitory checkpoints [43], and recruitment of
immunosuppressive myeloid cells [44] (Table 1). Many of these
mechanisms are now being targeted with rational ICl-based
combinations. For example, melanoma’s high mutational and
neoantigen load made it the first tumor type to be evaluated
in clinical trials of personalized neoantigen mRNA vaccine.
The Phase llb KEYNOTE-942 trial (mRNA-4157/V940, Merck
and Moderna) [45] demonstrated that adding a personalized
vaccine to pembrolizumab significantly improved recurrence-
free survival (79% vs. 62%) and distant metastasis-free survival
(92% vs. 77%) at 18 months compared with pembrolizumab
alone (Table 1) [45]. The recent approval of anti-lymphocyte
activation gene-3 (LAG-3) therapy (relatlimab plus nivolumab)
furtherillustrates how rational ICI combinations are expanding
the potential for durable response [46].

HNSCC

HNSCC is biologically heterogeneous, influenced by risk
factors such as tobacco, alcohol, and human papillomavirus
(HPV) infection, which significantly shape the tumor immune
landscape [94]. Historically, platinum-based chemotherapy
has served as the backbone of first-line therapy for recurrent or
metastatic HNSCC. HPV-positive (HPV+) tumors are generally
more inflamed and responsive to ICls, whereas HPV-negative
(HPV-) tumors often exhibit immune exclusion and profound
immunosuppression [95].

The clinical efficacy of PD-1 blockade in platinum-refractory
HNSCC was established through the CheckMate-141
(nivolumab) and KEYNOTE-040 (pembrolizumab) trials,
confirming ICls as a standard of care in this setting [68]
(Table 2). The role of PD-1 inhibitors was later expanded to
the first-line therapy in KEYNOTE-048, where pembrolizumab
improved outcomes both as monotherapy for PD-L1-positive
tumors and in combination with platinum/5-FU for all patients
[66]. Despite durable benefits in a subset of patients, objective
response rates remain modest (~15-20%) [96-98] (Table
1). KEYNOTE-012 [99] and KEYNOTE-055 [100] confirmed
comparable efficacy for PD-1 blockade between HPV+ and
HPV- populations in recurrent/metastatic HNSCC. Similarly,
CheckMate-141 demonstrated improved response rates
(13.3% vs. 5.8%) and OS in 361 platinum-refractory HNSCC
patients treated with nivolumab, with no significant difference
between HPV+ and HPV- status [101] (Table 2). In contrast, a
PD-L1 inhibitor, durvalumab, has not demonstrated benefit
in this setting. Phase Ill trials of durvalumab alone or in
combination with tremelimumab (a CTLA-4 inhibitor) failed to
improve OS compared with chemotherapy, limiting its clinical
role in recurrent/metastatic HNSCC [102,103].

Resistance in HNSCC is multifactorial (Table 1), including loss
of MHC | expression, defective IFN-y signaling, T-cell exclusion,
and expansion of regulatory T cells (Treg) and myeloid-
derived suppressor cells (MDSCs) within the TME [96,104,105].
Like melanoma and TNBC, many HNSCC tumors upregulate
PD-L1 in response to IFN-y [106], and alterations in the
phosphoinositide-3-kinase (PI3K) - phosphatase and tensin
homolog (PTEN) pathway contribute further to tumor evasion
due to the developed dysfunction of immune cells [24,107].
HNSCC exhibits unique features as HPV+ tumors evade
immunity via viral oncoproteins E6/E7 [107], displaying high
T-cell infiltration but increased Tregs and CTLA-4 expression
[22,23]. Tobacco-associated tumors have reduced immune
infiltration despite high mutational burden, consistent with
poorer outcomes [109,110]. Additionally, HNSCC displays
distinctive natural killer (NK)-cell biology, characterized
by abundant CD56%™ NK cells [13,111]. The NK activity is
suppressed through killer cell immunoglobulin-like receptor
(KIR) signaling and can be influenced by HPV status [13]
(Table 1). Emerging treatment strategies for HNSCC include
dual checkpoint blockade (PD-1 plus CTLA-4 or LAG-3) and
combinations with radiation, vaccines, or targeted therapies
aimed at reprogramming the immune TME [112,113].

TNBC

TNBC, defined by the absence of ER, PR, and HER2 expression,
is associated with poor prognosis and limited targeted
treatment options. Early-phase studies demonstrated modest
efficacy of PD-1 or PD-L1 inhibitors as monotherapy (~5-20%
ORR) in TNBC patients [82,114] (Table 2). The Phase | JAVELIN
trial of avelumab (targeting anti-PD-L1) reported ORRs of
44.4% in PD-L1-high versus 2.6% in PD-L1-low TNBC patients
[84]. Single-agent efficacy remains limited, with progression
driven by intrinsic resistance mechanisms such as immune
exclusion and adaptive resistance pathways [84]. TNBC is
typically characterized by low TMB, limited tumor-infiltrating
lymphocytes (TILs), and strong stromal barriers, making
it less responsive to ICls than melanoma [115] (Table 1).
Approximately 20-30% of TNBC tumors express PD-L1, often
correlating with higher TIL infiltration and higher histological
grade [116], providing an additional target for ICI.

Combination strategies have proven more effective. Meta-
analyses show that ICls combined with anthracyclines and
taxanes significantly increase pCR (64.8%) in early TNBC while
reducing toxicity compared to platinum chemotherapy [117].
Combining anthracycline and taxane chemotherapy with
durvalumab as adjuvant therapy can improve the prognosis
of early TNBC [118]. The IMpassion130 trial demonstrated that
atezolizumab plus nab-paclitaxel improved PFS and OS in PD-
L1-positive metastatic TNBC, although IMpassion131 failed
to replicate these benefits (Table 2) [117]. KEYNOTE-35 trial
found that pembrolizumab plus chemotherapy extended OS
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in PD-L1-high (CPS=10) metastatic TNBC patients (median OS
of 23.0 vs. 16.1 months) [77]. In early disease, KEYNOTE-522
showed that pembrolizumab plus neoadjuvant chemotherapy
improved pCR (64.8% vs. 51.2%) and event-free survival [119].

Despite these advances, TNBC remains largely ICl-refractory
[120] (Table 1). Shared resistance mechanisms include
immune exclusion, defective antigen presentation, and
suppressive myeloid infiltration, but TNBC exhibits certain
distinct features: low TMB, absence of pre-existing tumor-
specific immunity, stromal-mediated T-cell exclusion, and
macrophage-driven suppression. High genomic instability is
another hallmark of TNBC [20,121,122]. While challenging, it
also presents opportunities for targeted interventions, such
as poly (ADP-ribose) polymerase (PARP) and Protein Kinase B
(AKT) inhibitors, to enhance response rates [123]. TNBC tumors
often display immune-excluded phenotypes, characterized by
a lack of immune cell infiltration into the tumor parenchyma
due to a dense stromal matrix and TGF-beta-induced fibrosis
acting as physical barriers [121,122].

Mechanisms of Resistance to ICl Therapy

Resistance to ICls can be broadly divided into tumor-intrinsic
and -extrinsic mechanisms. Intrinsic mechanisms arise from
genetic and signaling alterations within tumor cells that
impair immune recognition or effector function. Extrinsic
mechanisms occur in the TME, where cellular and soluble
factors create an immunosuppressive milieu. In practice, these
mechanisms are highly interconnected and often overlap,
collectively shaping the degree and durability of response
[124,125] (Figures 1 and 2).

1. Tumor-intrinsic resistance mechanisms

Tumor mutation burden and neoantigen load: One of the
strongest correlates of ICl efficacy is TMB and the associated
generation of non-synonymous mutations that produce
immunogenic neoantigens [126]. High TMB, particularly
observed in mismatch repair-deficient tumors, is associated
with improved ICI responsiveness [127-129] (Figure 1.1).
Melanoma exemplifies this phenomenon: ultraviolet-induced
mutagenesis produces one of the highest TMBs among
solid tumors, generating a rich neoantigen landscape that
drives robust immune recognition [130,131]. Consistent
with this concept, recent clinical analyses have shown that
patients receiving biomarker-guided dual-matched therapies
(combining targeted agents with ICIs) can experience durable
clinical benefit, including long-term survival exceeding 1.5
years in some cases [132]. While the overall TMB in HNSCC is
intermediate compared to melanoma, a significant subset of
HNSCC patients have elevated TMB, and this is predictive of
better responses to ICls [133,134].

HPV status significantly shapes the neoantigen repertoire
with HPV+ tumors, in addition to tumor-derived neoantigens,
presenting viral antigens that enhance immune responses,

whereas HPV- tumors often show neoantigen loss [135].
By contrast, TNBC exhibits lower TMB, limiting neoantigen-
driven immunity and contributing to modest ICI response
rates [136]. Highly immunogenic tumors such as melanoma,
HNSCC, and non-small cell lung carcinoma, with enriched
TMB and neoantigen landscapes, are more responsive to
ICIs than tumors with low TMB, such as TNBC, prostate, and
pancreatic cancers. Consequently, low-TMB tumors often
exhibit poor T cell infiltration and a "cold" tumor immune TME
[131,137,138] (Figure 1.1). However, TMB is not universally
predictive of ICl response [139]. Tumors with high neoantigen
load may still develop resistance if these neoantigens are
weakly immunogenic [140,141] or actively suppress immune
responses (inhibitory neoantigens) [141-145]. Current
strategies focus on radiotherapy, chemotherapy, and vaccines
in combination with immunotherapy to increase neoantigen
availability and enhance immunogenicity [146-148].

Recent evidence indicates that neoantigens can also arise
from post-translational modifications, including glycosylation
(O-linked B-N-acetylglucosamine), phosphorylation
(phospho-neoantigens), and alternative RNA splicing [149-
151]. These modifications expand antigenic diversity, create
unique epitopes, and provide an immunological signature of
the "transformed self" recognized by T cells [152,153]. Some
phospho-neoantigens are shared across multiple tumor types
and patients, offering the potential for immunotherapeutic
targeting beyond personalized approaches [154].

Impaired antigen processing and presentation: Defects in
antigen presentation are a well-documented mechanism of ICl
resistance [155] (Figure 1.2). Effective CD8* T-cell recognition
requires intact MHC-I-mediated antigen processing and
presentation of tumor antigens [156]. Loss of MHC-I surface
expression or structural disruption allows tumors to evade
T-cell surveillance [157]. Mutations in (2-microglobulin
(B2M) destabilize MHC-I complexes [158], while deficiencies
in transporters associated with antigen processing (TAP1/2)
or endoplasmic reticulum (ER) aminopeptidases (ERAP1/2)
impair peptide translocation and loading [159,160].

These alterations occur across melanoma, HNSCC, and
TNBC, with context-dependent contributions [161,162].
In melanoma, B2M mutations and MHC-I downregulation
are strongly linked to acquired resistance after initial PD-1
blockade, and IFN-y pathway defects further reduce antigen
presentation [163,164] (Figure 1.2). In HNSCC, antigen
presentation status is influenced by HPV status, with HPV+
tumors generally retaining intact MHC-I expression and an
inflamed TME, whereas HPV- tumors more often lack MHC-I,
correlating with poor ICl response [124]. Beyond MHC-,
impaired MHC-II presentation by tumor or myeloid cells
attenuates CD4* T-cell-mediated immunity, adding another
layer of immune evasion [165]. In TNBC, B2M mutations are
less common, with resistance often driven by transcriptional
or epigenetic repression of antigen presentation machinery
[161,166].
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Disruption of IFN-y signaling: The IFN-y pathway is central
to tumor immune recognition (Figure 1.3), driving expression
of MHC-I and immunoregulatory molecules such as PD-
L1 via Janus kinases 1 and 2 (JAK1 and JAK2) and the signal
transducer and activator of transcription 1 (STAT1) activation
[167]. Disruption of this pathway by tumor-intrinsic alterations
is a well-established mechanism of primary resistance to ICls.
Loss-of-function mutations or epigenetic silencing of JAK1/
JAK2, and downstream transcriptional regulators impair
the IFN-y—-mediated induction of the antigen presentation
machinery and checkpoint ligands, enabling tumor immune
evasion by rendering tumors “invisible” to cytotoxic T cells,
even in the context of high TMB [164,168]. Consequently, in
melanoma, HNSCC, and TNBC, JAK/STAT pathway inactivation
prevents IFN-y-induced upregulation of MHC-I and PD-L1,
contributing to primary resistance despite an increased
neoantigen burden [163,169] (Figure 1.3).

In HNSCC (particularly HPV+) and TNBC, preserved IFN-y
signaling drives strong PD-L1 induction (Figure. 1.3), limiting
T-cell activity and promoting adaptive resistance [170]. HPV-
and tobacco-associated tumors often harbor JAK/STAT defects,
reducing IFN-y signaling, diminishing antigen presentation,
and promoting tumor immune evasion [171]. Amplification of
negative regulators, such as suppressor of cytokine signaling
1 (SOCS1) and protein inhibitor of activated STAT4 (PIAS4),
further suppresses IFN-y signaling [169], thereby facilitating
immune evasion.

Paradoxically, intact IFN-y signaling can also drive adaptive
resistance, as chronic exposure induces chronic PD-L1
expression, dampening T-cell activity and fostering immune
evasion [170]. Thus, IFN-y signaling exerts a dual influence: loss
abrogates immune recognition and drives primary resistance,
while persistent activation promotes adaptive resistance
through PD-L1-mediated suppression.

Upregulation of immune checkpoint ligands by tumor
cells: Tumor cells evade immune pressure by upregulating
several inhibitory checkpoint ligands on their surface,
effectively suppressing activation of the T-cells expressing
cognate receptors (Figure 1.4). The expression of such ligands
within the TME can quench immune effector functions,
promote regulatory or suppressive subsets of cells, and allow
the tumor to evade immune attack [172]. This mechanism is
central to the processes of immune escape and contributes
to both primary and acquired resistance to ICI [173]. PD-
L1 expression has been extensively studied as a predictive
biomarker for response to PD-1/PD-L1 blockade across
multiple cancer types, including melanoma, HNSCC, NSCLC,
and TNBC [97,135,162,170,174]. Higher PD-L1 expression
is generally associated with increased response rates to
checkpoint inhibitors; however, substantial clinical benefit is
also observed in PD-L1-negative tumors. This indicates that
PD-L1 status is neither a sufficient nor necessary condition for

therapeutic response [124,175]. The limitations of PD-L1 as a
biomarker reflect tumor heterogeneity, emphasizing the need
for additional predictive indicators beyond PD-L1 alone [174].

Beyond PD-L1, many tumors express ligands for other
checkpoint receptors (Figure 1.4), for instance: LAG-3, T cell
immunoglobulin and mucin-domain-containing-3 (TIM-3),
T cell immunoreceptor with immunoglobulin and tyrosine-
based inhibitory motif domain (TIGIT) and V-domain Ig
suppressor of T cell activation (VISTA) [176,177]. TIM3 interacts
with several ligands, including galectin-9, phosphatidylserine,
carcinoembryonic antigen-related cell adhesion molecule
1 (CEACAMT), and high mobility group protein B1 (HMGB1),
as well as HLA-B-associated transcript 3 (BAT3). LAG-3 binds
fibrinogen-like protein 1 (FGL1), lectins galectin-3 (Gal-3),
and lymph node sinusoidal endothelial cell C-type lectin
(LSECtin). TIGIT interacts with CD155 (PVR) and CD112 (PVRL2)
[178,179], expressed on tumor cells and competing with
ligand-expressing APCs [180,181]. In melanoma [179] and
HNSCC [182], the CD155/TIGIT axis is prominent, contributing
to IClI resistance despite highly immune TME. TNBC cells
express CD155 and CD112 as well, promoting TIGIT-mediated
immunosuppression, which is linked to poor prognosis with
anti-PD-1 therapy [183].

Tumor-intrinsic mechanisms can include PD-L1-enriched
exosomes, which extend immunosuppression systemically
by inhibiting T-cell activation, promoting apoptosis, and
enhancing Treg function [184]. A reduction in exosomal PD-
L1 during treatment correlates with improved responses,
suggesting its potential as a liquid biopsy biomarker [184].

Oncogenic pathway activation: Oncogenic signaling
pathways play a central role in immune evasion and ICl
resistance across melanoma, HNSCC, and TNBC. Activation
of PI3K/AKT/mammalian target of rapamycin (mTOR), WNT/
[-catenin, and mitogen-activated protein kinase (MAPK)
pathways reshapes the TME and suppresses immune
infiltration (Figure. 1.5) [185-188]. However, these pathways
are often characterized by complex feedback loops and
compensatory mechanisms that sustain tumor growth and
contribute to immune escape [189-191]. Current efforts focus
on optimizing drug combinations, dosing schedules, and
patient selection to maximize therapeutic benefit. Rationally
combining these pathway inhibitors with ICls represents a
promising approach to overcome immune exclusion and
treatment resistance [192,193].

Aberrant PI3K/AKT/mTOR activation is common in TNBC
and HNSCC, often resulting from PTEN loss or PI3K mutations
[194,195]. This pathway supports tumor proliferation and
immune escape by reducing CTL infiltration and enriching
immunosuppressive myeloid populations [196]. Some PI3K/
AKT/mTOR inhibitors have demonstrated promising preclinical
activity in breast cancer [197,198], but their therapeutic
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efficacy has been partially limited by acquired resistance, as
well as by substantial adverse effects [199]. Preclinical and
clinical studies show that combining PI3K inhibitors with
ICIs improves antitumor responses in melanoma and TNBC
[200,201], with ongoing trials investigating similar strategies
in HNSCC [24]. While pharmacological AKT inhibition showed
no impressive effects, genetic silencing of all AKT paralogs
triggered mTOR-dependent melanoma cell death, rescuable
by kinase-active AKT1 [191]. A novel dual PI3K/mTOR inhibitor

suppressed both proliferation and growth of MAPK inhibitor-
resistant melanoma in vitro and in vivo, showing promise as
a well-tolerated therapy for frontline and resistant disease
[202,203]. Key strategies also include leveraging pan-PI3K
inhibitors for broader pathway targeting in HNSCC, as
well as incorporating epigenetic modifiers such as histone
deacetylase inhibitors (HDACi) or DNA methyltransferase
inhibitors to disrupt alternative signaling routes and overcome
compensatory resistance mechanisms [195,196].
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Aberrant WNT/B-catenin signaling is not only a key
mechanism of tumorigenesis but a significant modulator
of TME, contributing to immune exclusion and resistance to
ICIs across several cancers [190,204]. This phenomenon has
been extensively demonstrated in melanoma and is gaining
recognition in HNSCC and TNBC [42,205]. In preclinical models
and clinical settings, the WNT/B-catenin pathway prevents
dendritic celland T cell infiltration, generating a "cold" immune
TME and driving resistance to PD-1/CTLA-4 blockade [41]
(Figure 1.5). Mechanistically, 3-catenin activation suppresses
CCL4, impairing the recruitment of CD103+ dendritic cells
essential for CD8* T-cell priming [188]. The WNT/B-catenin
pathway contributes to the preservation or expansion of Tregs
via IL-10 release, thereby reinforcing an immunosuppressive
TME [206]. In TNBC, characterized by a generally "cold"
immune landscape, the WNT/B-catenin pathway's influence
on immune exclusion is significant, making it an essential
target for therapeutic intervention. Furthermore, the interplay
between the WNT/B-catenin pathway and other metabolic
pathways, such as those involving IDO and adenosine, can
further solidify an immunosuppressive microenvironment,
presenting additional challenges for immune cell function in
the face of ICl treatment [207].

Mutations in the MAPK pathway (e.g., BRAF-V600E in
melanoma, diverse mutations in HNSCC) contribute to
ICl resistance via cytokine induction, diminished antigen
presentation, and expansion of regulatory cells [192,208]. In
melanoma, acquired resistance to MAPK-targeted therapy
is associated with decreased MHC-I expression, reduced
T-cell infiltration, and diminished immunotherapy efficacy
through IL-6/IL-10-mediated suppression and Treg expansion
[209,210]. In contrast, HNSCC displays a more nuanced
signaling context, where some MAPK-mutant tumors exhibit
better CD8" T-cell infiltration and improved ICl outcomes. In
TNBC, MAPK dysregulation similarly contributes to immune
escape, limiting responses to combination therapy [211].

2. Tumor-extrinsic resistance mechanisms

The TME is highly heterogeneous, consisting of malignant
cells, immune populations, stromal elements, vasculature,
and extracellular matrix. Emerging evidence highlights the
complex crosstalk among these components critically shaping
immunosuppression, remodeling anti-tumor immune
responses, and dictating therapeutic sensitivity [25,212].
Resistance mechanisms within the TME arise from both
cellular and non-cellular factors that suppress local immunity,
including expansion of inhibitory immune populations,
physical exclusion of effector T cells, and metabolic constraints
that induce T-cell exhaustion [213] (Figure 2).

Immunosuppressive cell populations: Resistance across
solid tumors is reinforced by immunosuppressive subsets

such as Tregs, MDSCs, and M2-polarized tumor-associated
macrophages (TAMs), which are key mediators in melanoma,
HNSCC, and TNBC (Figure 2.1). These cells inhibit cytotoxic
T-cell activity by secreting IL-10, transforming growth factor-
beta (TGF-B), and other suppressive molecules [214,215].
In melanoma, tumors arise within a “hot” immune milieu
enriched in CD8*T cells [216] (Figure 2.1). However, abundant
Tregs blunt T cell cytotoxic activity, enforce tolerance, and
promote therapy resistance. In HNSCC, the immune landscape
is shaped by etiological diversity. HPV+ tumors display dense
T-cell infiltration with frequent Tregs and stromal activation
[217], whereas tobacco-associated HNSCC exhibits immune
desertification and poor ICl responses [109,171]. Across both
HPV+ and HPV- tumors, cytotoxic CD569™ NK cells, though
abundant, are suppressed by KIR signaling [111]. HPV+ tumors
alsoexploit E6/E7 oncoproteins toimpair antigen presentation,
dampen NK activity, and reprogram cytokine signaling
[13,218]. In contrast, TNBC is often immunologically "cold"
and characterized by scarce CTLs and an enrichment with
immunosuppressive MDSCs and M2-polarized macrophages,
which may limit ICl responsiveness [219]. Within these tumor
contexts, several immunosuppressive cell populations are
central drivers of immunotherapy resistance [214,215].

Cytokine/chemokine dysregulation: Cytokine dysregulation
in the TME is typically initiated by oncogenic signaling,
hypoxia-induced stress responses, and innate immune
activation, which together establish self-sustaining cytokine
loops that shape an immunosuppressive microenvironment
(Figure 2.2). IL-6 drives MDSC expansion via STAT3 and IDO
signaling [220], skewing T cell differentiation toward Th17
phenotypes [221]. Tumor necrosis factor-alpha (TNF-a)
signaling, despite activation of CTL, enhances MDSC-
mediated immunosuppression by promoting the survival and
suppressive function of these cells [222]. TGF-f3 reprograms
immune and stromal metabolism, promoting epithelial-to-
mesenchymal transition (EMT) [223]. Together, IL-6, TNF-a,
and TGF-B drive T-cell exhaustion, enhance the expression
of PD-1 and CTLA-4, expand Tregs, and impair NK activity
[221,223,224]. These cells subsequently release inhibitory
mediators that block effector T-cell infiltration into the tumor,
establishing a suppressive niche and fostering immune
exclusion [225,226].

Stromal and metabolic barriers: Spatial heterogeneity
across melanoma, HNSCC, and TNBC creates barriers to
immune infiltration and ICl efficacy (Figure 2.3). Beyond
purely “hot” or “cold” classifications, many solid tumors
exhibit immune-excluded phenotypes, characterized by
immune cells—especially CD8* T cells—localized to the
tumor periphery or stroma but unable to penetrate the tumor
parenchyma [227,228]. This spatial immune segregation,
frequently driven by dense extracellular matrix (ECM)
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deposition, cancer-associated fibroblast (CAF) activation, and
TGF-B-mediated signaling, creates physical and biochemical
barriers that prevent effective cytotoxic engagement [226].

Such immune-excluded environments are especially
prominent in TNBC, where stromal TGF-$ signaling and
myofibroblast expansion contribute to peripheral T-cell
trapping and therapeutic resistance [229]. Similarly, subsets
of HNSCC show collagen crosslinking and stromal niche
formation driven by CAFs, contributing to immune exclusion
[230]. Together, these features underscore that stromal
remodeling, not only cellular immunosuppression, represents
a complementary axis of immune evasion across solid tumors.

Dense desmoplastic stroma, enriched in CAFs, collagen, and
hyaluronan, further restricts T-cell infiltration in HNSCC and
TNBC [231,232]. CAF-derived IL-6 and JAK2/STAT3 activation
promote fibroblast proliferation, Th17 polarization, and
immunosuppressive cytokine release [218,233]. In melanoma,
resistance is compounded by metabolic rewiring, including
activation of indoleamine 2,3-dioxygenase (IDO) and
adenosine accumulation, which suppresses T- and NK-cell
function and blunts PD-1 blockade efficacy [231,233,234].

Epithelial-mesenchymal transition (EMT) remodeling
further strengthens stromal barriers (Figure 2.3), particularly
in HNSCC and TNBC, where TGF-B, IL-6, Wnt, Notch, and
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hypoxia pathways collectively drive immune exclusion and
therapeutic resistance [235,236]. Hypoxia, a common feature
across all three cancers, stabilizes hypoxia-inducible factor-1a
(HIF-10a), thereby promoting angiogenesis, PD-L1 expression,
recruitment of suppressive cells, and activation of metabolic
checkpoints such as IDO and adenosine [237-239] (Figure
2.3).

HNSCC and TNBC are particularly hypoxic due to dense
stroma and high metabolic demand, whereas melanoma
harbors localized hypoxic niches driving immune escape
[240-242]. In HNSCC, hypoxia is particularly pronounced
due to the high metabolic demand of rapidly proliferating
tumor cells and extensive stromal fibrosis. Hypoxia in HNSCC
promotes angiogenesis through vascular endothelial growth
factor (VEGF), induces PD-L1 upregulation, and facilitates
recruitment of MDSCs and TAMs, thereby driving tumor
immune evasion [233]. In TNBC, elevated HIF-1a enhances
VEGF secretion and stromal fibrosis, fostering metastasis and
resistance [243]. Accumulation of lactate and adenosine under
hypoxic stress also suppresses T and NK cell function, limiting
ICl efficacy [244]. In melanoma, although global hypoxia
is less pronounced, localized niches activate CCL28 and
CXCL12, attracting Tregs and MDSCs and reinforcing immune
suppression [245]. Collectively, stromal remodeling, metabolic
reprogramming, and hypoxia form an interlinked network
that shapes the TME, restricts immune infiltration, and drives
resistance to ICl therapies across melanoma, HNSCC, and
TNBC.

Alternative immune checkpoints: Beyond PD-1 and CTLA-
4, several alternative inhibitory pathways—including TIM-3,
LAG-3, TIGIT, and VISTA—contribute to sustained immune
exhaustion and tumor immune evasion [172,246]. These
pathways signal through unique mechanisms to suppress T
cell proliferation and cytokine production, fostering a state
of chronic exhaustion and reduced cytotoxic activity. The
engagement of these alternative checkpointsas compensatory
mechanisms in response to ICl therapy underscores the
development of secondary acquired resistance.

TIM-3, often co-expressed with PD-1 on T cells, NK cells, and
Tregs, suppresses effector functions and is associated with
poor survival [247,248]. Dual blockade of PD-1 and TIM-3 has
shown potential to restore T-cell activity [249].

LAG-3iswidely expressed on activated and exhausted T cells,
NK cells, B cells, and plasmacytoid dendritic cells. It synergizes
with PD-1—particularly in melanoma and HNSCC—Ileading
to profound T-cell exhaustion and resistance to anti-PD-1/
PD-L1 therapy. In TNBC, LAG-3 expression demonstrates a
context-dependent role, but combined targeting of PD-1 and
LAG-3 offers promise for overcoming immunosuppression
[181,250].

TIGIT interacts with CD155 or CD112 to suppress CTL and
NK cell activity, enhancing IL-10 secretion and Treg expansion
[251]. High TIGIT levels predict resistance in melanoma and
TNBC, and TIGIT inhibition can enhance responses to PD-1
blockade [180].

VISTA, expressed on myeloid cells and T cells, dampens
T-cell activation and promotes immunotherapy resistance,
particularly in inflamed tumors such as HNSCC and TNBC
[252,253]. Collectively, these alternative checkpoints interact
with cytokine networks and stromal barriers, establishing a
multifaceted immunosuppressive tumor microenvironment.
Their cooperative roles support clinical investigation of dual or
triple checkpoint blockade strategies to overcome resistance
[177,249].

3. Systemic mechanisms

Resistance to ICls is shaped by systemic host determinants
[19,20,254]. Host-related factors, including chronic
inflammation, nutritional and metabolic status, and the
microbiome, modulate both intrinsic (mutational landscape,
cytokine signaling, and metabolism) and tumor extrinsic
mechanisms (immune cell trafficking and effector function
within the TME) [233,255]. These systemic influences differ in
relative importance across melanoma, HNSCC, and TNBC, yet
collectively define immune competence, treatment tolerance,
and the durability of anti-tumor responses.

Chronic inflammation and comorbidities: Systemic
inflammation, driven by smoking, alcohol use, obesity, chronic
infections, and aging, impairs antigen presentation, blunts
T-cell priming, accelerates immune senescence, and thereby
reduces ICl efficacy [256]. In melanoma, chronic ultraviolet-
driven inflammation and age-related immune-senescence
reduce naive T-cell pools and cytokine fitness, limiting
response durability in older or frail patients. Body-composition
metrics in melanoma patients further forecast ICl outcomes:
low skeletal muscle index, high subcutaneous adipose tissue
density, and sarcopenia correlate with inferior progression-
free and overall survival on ICI therapy. Conversely, better
pre-diagnosis diet quality (e.g., higher Healthy Eating Index)
has been linked to thinner primary tumors at presentation,
underscoring the role of modifiable host determinants in
shaping immunity.

In HNSCC, tobacco and alcohol exposure drive inflammation,
myeloid skewing, and frailty, all of which correlate with
inferior IClI outcomes [257]. HPV+ HNSCC is generally more
immunogenic, yet systemic comorbidities and malnutrition
remain detrimental. For instance, cachexia and sarcopenia
impose substantial metabolic stress that impairs T-cell priming
and effector cytokine production [258,259]. Dysphagia,
mucositis, and treatment-related catabolism frequently
result in weight loss and immune dysfunction. Validated
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tools such as patient-generated subjective global assessment
(PG-SGA) link poor nutritional status to advanced stage and
worse survival; structured interventions (dietary counseling,
prophylactic feeding tubes) mitigate severe toxicities and
preserve immune competence during chemoradiation [260].

In TNBC, systemic inflammation is often linked to obesity,
insulin resistance, and adipokine dysregulation (elevated
leptin,reducedadiponectin),whichincreasecirculatinglL-6and
TNF-a, promote myelopoiesis, and skew toward suppressive
myeloid phenotypes [261,262]. Systemic metabolism strongly
influences TNBC aggressiveness. Preclinical studies show
that Western-style diets accelerate tumor growth and blunt
chemotherapy, whereas fasting-mimicking or ketogenic
diets enhance immune fitness and prolong survival in murine
TNBC [263]. Clinically, lower circulating glucose has been
associated with improved outcomes in some TNBC cohorts
[264], consistent with tumor-immune metabolic competition.
Nutritional and metabolic interventions are now being
evaluated as adjunctive strategies to potentiate ICl efficacy
[260].

Microbiome dysbiosis: Melanoma and HNSCC are uniquely
shaped by their interaction with microbiota, given their
interface with heavily colonized barrier surfaces—the skin
and oral cavity, respectively—which profoundly influence
tumor-immune dynamics. The distinct microbial ecology
at these sites plays a pivotal role in local immunity [265].
Microbial metabolites, particularly short-chain fatty acids,
modulate chemokine production (CCL5, CXCL10), enhance
T-cell metabolism, and promote intra-tumoral trafficking
[266]. In contrast, dysbiosis impairs antigen presentation,
reduces CD8+ T cell activation, and promotes expansion of
Tregs, creating an environment conducive to immune evasion
[267].

In melanoma, multiple studies demonstrate that fecal
microbiota transplantation (FMT) from ICI responders into
non-responders restores intra-tumoral immune infiltration
and improves clinical outcomes, with OSR approaching 65%,
including 20% complete responses [268-270]. In HNSCC, the
oral microbiome exerts both cancer- and therapy-relevant
effects [271,272]. In resected HNSCC patients, a shift toward
health-associated taxa (e.g. Streptococcus, Rothia) and
away from Capnocytophaga, Prevotella, and Leptotrichia
correlated with improved three-year disease-specific survival
[272,273]. However, direct evidence linking oral or gut
microbiome modulation to ICl efficacy in HNSCC remains
limited and warrants prospective studies [274]. In TNBC,
baseline gut microbial diversity correlates with longer PFS
in patients treated with atezolizumab plus chemotherapy
[275]. Preclinical TNBC models further suggest that restoring
beneficial microbial metabolites, such as branched-chain
amino acids, enhances PD-1-mediated immunity [276].

Collectively, the microbiome functions both as a biomarker
of ICl benefit and as a modifiable co-therapeutic target across
melanoma, HNSCC, and advanced TNBC.

Conclusions and Lessons from a Decade of Forefront
Therapy

A decade of clinical experience with ICl has fundamentally
shifted the therapeutic paradigm in cancer, particularly for
melanoma, HNSCC, and TNBC. These advances have redefined
survival outcomes and established immunotherapy as a
core pillar of modern oncology. However, the management
of immune-related adverse events (irAEs) remains a critical
challenge [277]. irAEs can affect virtually any organ system—
most commonly the skin, gastrointestinal tract, liver, and
endocrine glands—and range from mild to life-threatening
[278]. Severe, multi-organ toxicities limit the broader
application of ICls, particularly in frail or comorbid patients.
Several prospective clinical strategies are under active
investigation—notably IL-6/IL-6R blockade (e.g., tocilizumab)
and TNF-a or gut-selective agents (infliximab, vedolizumab)
for severe or steroid-refractory irAEs, as well as targeted
approaches such as abatacept, JAK inhibitors, IL-1 blockade,
and microbiome modulation—which aim to reduce toxicity
severity and dependence on high-dose corticosteroids while
maintaining efficacy [221-226]. Early clinical signals are
encouraging, but larger randomized studies with survival and
quality-of-life endpoints are required to establish standard
mitigation strategies [279].

Recent clinical and translational research increasingly
emphasizes combination strategies that concurrently target
multiple resistance mechanisms (Tables 2 and 3). Key
developments include dual checkpoint blockade, targeting
PD-1 together with LAG-3 [280], TIGIT [281], or other inhibitory
receptors [282], which has demonstrated efficacy in treating
refractory tumors. Neoadjuvant immunotherapy, involving
administration of ICls before surgical intervention, has shown
improved pathological responses and survival outcomes
in melanoma and TNBC, offering insight into early tumor-
immune dynamics [50,283].

Novel immunomodulatory agents such as vidutolimod (TLR9
agonist) [284] and WTX-124 (tumor-activated IL-2 prodrug)
[285] are designed to enhance both innate and adaptive
immunity while minimizing systemic toxicity. Adoptive
T-cell therapies, particularly TIL products such as lifileucel
(Amtagvi™), along with personalized cancer vaccines, offer
promising avenues for patients with ICl-refractory disease
[286-288]. Similarly, antibody-drug conjugates (ADCs) such
as sacituzumab govitecan, a Trop-2-directed ADC, have shown
substantial benefit in heavily pretreated TNBC [289]. These
targeted therapies address tumor-specific vulnerabilities and
contribute to a multi-modal framework for overcoming tumor
heterogeneity and resistance.
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Table 3. Anti-PD-1 combination strategies with immune-stimulating agents to combat resistance to ICI.

associated macrophages from
immunosuppressive to pro-
inflammatory phenotype.

Solid Tumors

showed limited clinical
activity.

Target/Agent Mechanism of Action Clinical Trial Tumor Type(s) Key Outcome References
Phase Status
EGFR inhibitors Inhibition of EGFR promotes Phase II/11] HPV-related Improved ORR and overall [68,291]
antigen presentation and cancers survival in combination with
enhances immune response PD-1 inhibitors
to tumor cells
STAT3 inhibitors Blockade of STAT3 suppresses | Phase | Advanced Solid | Tolerable safety profile; [292]
an immunosuppressive Tumors preliminary anti-tumor activity
transcription factor
CXCR2 inhibitors Blockade of the chemokine Phase I/l Solid tumors Combination with [293]
receptor CXCR2 (primarily durvalumab did not improve
binds IL-8) reduces neutrophil ORR and had high adverse
recruitment event rates.
IDO1 inhibitors Blockade reduces Phase I-lI Melanoma, Solid | Epacadostat + [207]
immunosuppressive Tumors pembrolizumab: safe but
tryptophan metabolism failed phase lll melanoma trial.
and restores T and NK cell Navoximod + atezolizumab:
proliferation. phase | ongoing
NKG2A inhibitors Blockade restores CD8*T cell | Phasell HNSCC Combination with [294]
and NK cell function. durvalumab + SOC did not
improve PFS; results are
pending.
B7-H3 inhibitors Blockade enhances CD8* T Phase II/11l Solid Tumors Combination with [55]
cell-mediated anti-tumor retifanlimab improved ORR;
activity. acceptable safety profile.
VEGF inhibitors Blockade of VEGF signaling Phase llI Endometrial, Lenvatinib + pembrolizumab | [295,296]
reduces tumor angiogenesis Renal, Solid did not improve survival
and alleviates hypoxia-driven Tumors outcomes [126,127].
immunosuppression.
0OX40 agonists Costimulatory receptor Phase I/l Solid Tumors Well tolerated; modest activity | [297]
activation enhances T cell as monotherapy; combination
proliferation and survival. trials with PD-1 ongoing.
4-1BB (CD137) Costimulatory receptor Phase I/l Solid Tumors Some clinical activity; [298]
agonists activation enhances T and NK hepatotoxicity limited
cell activation. development; newer agents in
trials with PD-1 inhibitors.
TLR agonists Toll-like receptor activation Phase I/l Melanoma, Early signals of efficacy in [299]
stimulates innate immunity HNSCC combination with PD-1
and dendritic cell function. inhibitors.
STING agonists Activates STING pathway, Phase | Solid Tumors, Safe but limited responses [300]
inducing type | interferons Lymphoma as monotherapy; PD-1
and innate immune activation. combinations under
investigation.
CSF1R inhibitors Reprograms tumor- Phase I/l Pancreatic and Combination with nivolumab | [301]

This table summarizes investigational approaches combining PD-1 inhibitors with other immune-modulating therapies. Each entry
highlights the molecular target, its immunological mechanism of action, and the clinical outcome reported to date, ranging from early-
phase safety and efficacy signals to negative or inconclusive phase Il results.
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In addition to these approaches, next-generation
immunotherapies are being developed to further enhance
clinical outcomes [290]. Oncolytic viruses representa promising
avenue for overcoming resistance to ICls. The FDA-approved
talimogene laherparepvec (T-VEC), a genetically modified
herpes simplex virus, has demonstrated durable responses
and improved overall survival in advanced melanoma by
promoting tumor lysis and systemic immune activation [302].
Ongoing trials are evaluating T-VEC in combination with ICls
and radiotherapy to further augment antitumor immunity
[303]. In HNSCC, clinical studies are investigating intratumoral
viral delivery and combination regimens, particularly in HPV-
positive or immunologically “cold” tumors where viral priming
may enhance immune infiltration [304]. For TNBC, oncolytic
HSV and reoviruses are under clinical evaluation for their ability
to induce immunogenic cell death and reshape the TME [305].

Epigenetic reprogramming provides an additional avenue to
overcome immune resistance. In melanoma, inhibitors of DNA
methyltransferases (DNMTs) and HDACs can restore antigen
presentation, reactivate silenced immune genes, and enhance
checkpoint blockade efficacy [306,307]. In HNSCC and TNBC,
epigenetic therapies are under investigation to reverse tumor-
induced immunosuppression and restore effective immune
signaling, potentially sensitizing tumors to chemotherapy
and ICls [308,309]. Moreover, targeting DNA damage response
pathways has emerged as a complementary approach.
PARP inhibitors, such as Olaparib, have been approved for
BRCA-mutated TNBC [310], with ongoing trials exploring
combinations with ICls, AKT inhibitors, and ADC [311-313].

The integration of these next-generation therapies with
current ICls underscores a dynamic shift towards personalized
cancer treatments. Strategies such as optimizing nutrition,
preserving metabolic and immune fitness, and modulating the
microbiome through dietary fiber, pre/probiotics, or FMT are
being investigated as adjunctive therapies to enhance immune
competence, reduce toxicities, and extend the durability of
checkpoint blockade [266,314]. Recent progress in single-cell
transcriptomics, spatial multi-omics, and Al-assisted response
prediction is also refining patient selection and guiding
personalized combinations [315-318].

Collectively, these developments highlight a translational
shift toward precision immunotherapy—integrating genomic,
metabolic,andimmunologic profiling to tailor treatments while
mitigating toxicity. Lessons from the past decade underscore
that durable benefit from ICls requires not only overcoming
resistance but also mastering the balance between immune
activation and immune tolerance, ensuring that the next
generation of immunotherapies achieves maximal efficacy
with minimal harm.
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