

Journal of Clinical Cardiology

Review Article

Association of Vitamin D Serum Levels with Clinical Outcomes in Patients with Acute Decompensated Heart Failure

Seyedeh Fatemeh Mirrazeghi¹, Parsa Monajemi¹, Soheil Hassanipour², Yasaman Borghei¹, Samira Arami^{1,*}

¹Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran

²Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran

*Correspondence should be addressed to Samira Arami, samiraarami202@gmail.com

Received date: June 28, 2025, Accepted date: July 10, 2025

Citation: Mirrazeghi SF, Monajemi P, Hassanipour S, Borghei Y, Arami S. Association of Vitamin D Serum Levels with Clinical Outcomes in Patients with Acute Decompensated Heart Failure. J Clin Cardiol. 2025;6(2):142–147.

Copyright: © 2025 Mirrazeghi SF, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Background: Heart failure (HF) stands out as a major reason for hospital admissions. Vitamin D deficiency is also associated with a higher risk of cardiovascular diseases. Due to recent conflicting findings, this study aimed to investigate clinical outcomes based on serum vitamin D levels in hospitalized patients with HF.

Methods: In this cross-sectional study, 258 hospitalized patients with acute decompensated heart failure (ADHF) were investigated during 2022–2023. Demographic, clinical and laboratory parameters of patients were recorded. They were divided into two groups based on 25-hydroxyvitamin D ([25-OH] D) levels: sufficient ≥30 ng/ml and insufficient <30 ng/ml. Finally, the studied variables were compared between the groups. All data analysis was performed by SPSS version 16.0.

Results: In this study, the mean age of the patients in sufficient and insufficient vitamin D groups was 66.91 ± 14.38 and 63.88 ± 13.74 years, respectively. There was no significant difference in terms of age, underlying diseases, smoking status among the groups (P>0.05). The ejection fraction (EF) was lower in patients with insufficient vitamin D (20.66 $\pm10.91\%$ vs. $23.98\pm11.82\%$). Moreover, vitamin D deficiency was associated with history of hospitalization (P<0.05). The incidence of edema and arrhythmia was higher in patients with insufficient vitamin D (P<0.05) and it was not related to mortality rate during hospitalization in the studied population (P>0.05).

Conclusions: Our findings indicate that vitamin D deficiency in patients with ADHF is associated with lower EF, recurrent hospitalizations, edema, and arrhythmia. Consequently, regular monitoring and appropriate treatment of vitamin D levels in these individuals may help mitigate its associated complications to some extent, as much as possible.

Keywords: Cardiovascular diseases, Heart failure, 25-Hydroxyvitamin D, Outcome

Introduction

Heart failure (HF) is a clinical syndrome characterized by impaired cardiac supply of sufficient blood flow to meet metabolic needs or impaired venous return and filling of heart cavities [1]. It is estimated that approximately 64 million people worldwide suffer from HF [2]. According to the European Society of Cardiology, HF stands out as a leading reason for hospital admissions among individuals aged 65 and older. The incidence is approximately 1–2% in the general

population, but it escalates to more than 10% in patients aged 70 years and above [3]. Acute decompensated heart failure (ADHF) encompasses a diverse range of conditions, commonly manifesting as shortness of breath, swelling, and fatigue. Although this condition is widespread and linked to significant health risks and mortality, moreover, diagnosing it can be challenging [4]. HF can be divided into 3 main categories: 1) HF with reduced ejection fraction (EF) (HFrEF) characterized by left ventricular EF (LVEF) < 40%, 2) HF with mildly reduced EF (HFmrREF) which is defined by LVEF = 41–

49%, 3) HF with preserved EF (HFpEF) which is defined as LVEF >50% [5].

Emerging risk factors, particularly hypovitaminosis D, are gaining attention for their potential impact on prognosis and treatment [6,7]. Vitamin D, an essential micronutrient, is crucial for calcium homeostasis and bone health. Beyond its skeletal benefits, low vitamin D levels are linked to an increased risk of cardiovascular diseases (CVDs), mortality, diabetes mellitus (DM), arterial hypertension (HTN), and chronic kidney disease (CKD) [8–11]. Recent studies indicate that vitamin D deficiency is prevalent among individuals with coronary artery disease or HF [12,13]. A meta-analysis has shown that vitamin D supplementation can improve EF in HF patients [14].

Based on current evidence, vitamin D supplementation has been recommended for the prevention and treatment of various CVDs. However, due to conflicting findings, further research is needed [15,16]. This study aimed to examine clinical outcomes in hospitalized heart failure (HF) patients based on their serum vitamin D levels.

Material and Methods

Study design

In this cross-sectional study all patients with ADHF who were hospitalized in Dr. Heshmat Hospital, Rasht, Iran from September 2022 to March 2023, were investigated. Inclusion criterion was hospitalized patients with HFrEF and HFmrREF (LVEF ≤49%). Exclusion criteria were taking calcium and vitamin D supplements, corticosteroids and anticonvulsants drugs before the study, having chronic granulomatous diseases that secrete calcium, such as sarcoidosis or blood dyscrasias, any types of malignancy, percutaneous coronary intervention (PCI), coronary artery bypass grafting (CABG) or pacemaker placement indication during the study period. Written informed consent obtained from all participants.

Data collection

Demographic characteristics (including age, gender, and smoking status), medical history (including HTN, HLP, DM, and CKD), echocardiographic findings (including LVEF, left ventricular hypertrophy (LVH), right ventricular (RV)-dilation, and valvular disorders (both valvular stenosis and regurgitation more than mild were considered as valvular disorders), previous hospitalization history, current length of hospitalization, in-hospital mortality, presence of chest pain, edema, arrhythmia and dyspnea severity according to New York Heart Association (NYHA) classification were recorded for all patients.

Moreover, serum level of 25-hydroxyvitamin D ([25-OH] D) measured by spectrophotometry using ELISA method via 5 cc

of blood sample. Then, patients were divided into two groups based on 25(OH)D level: sufficient ≥30 ng/ml and insufficient <30 ng/ml [17]. Finally, the studied variables were compared between two groups of patients.

It should be noted that the studied population were initially treated with intravenous furosemide until their condition stabilized. Then standard treatment of HF based on guideline including beta-blockers such as metoprolol, bisoprolol and carvedilol, angiotensin-converting-enzyme inhibitors (ACE) inhibitors including captopril, enalapril, valsartan and empagliflozin, spironolactone and eplerenone were set and prescribed for all patients until discharge.

Sample size calculation

Based on the study by Aparicio-Ugarriza [1], the initial sample size was 232 people. Considering a 10% attrition rate, 258 participants were included. Assumptions: 95% confidence level, 90% study power, prevalence calculated in other studies: 68%.

Statistical analysis

In this study, the quantitative variables were presented as mean (standard deviation) and qualitative variables presented as frequency (percent). Quantitative variables were compared using independent t-tests if normally distributed (assessed via Shapiro-Wilk test) or Mann-Whitney U test if non-normal. Qualitative variables were analyzed using chisquare or Fisher's exact test. To assess the association between vitamin D status (independent variable) and clinical outcomes (dependent variables), binary logistic regression was employed for dichotomous outcomes (e.g., mortality, arrhythmia), adjusting for covariates. Multivariate linear regression was used to evaluate the relationship between vitamin D levels (continuous) and ejection fraction (continuous), adjusting for confounders. Results are reported as odds ratios (OR) with 95% confidence intervals (CI) for logistic regression and regression coefficients (β) for linear regression. Significance level considered as P-value < 0.05. All data analysis was performed by SPSS version 16.0.

Results

In this study, a total of 258 participants were investigated and divided into 2 groups of sufficient (n=91) and insufficient (n=167) vitamin D level. The mean age of the patients in sufficient and insufficient vitamin D groups was 66.91 ± 14.38 and 63.88 ± 13.74 years, respectively. Most of the patients were male and 70.4% of them had insufficient vitamin D level. There was no significant difference in terms of age (P=0.142), medical history (HTN P=0.614) and smoking status (P=0.668) between the groups.

In our study, most of the patients were in III and IV NYHA Classification and demonstrated higher dyspnea and fatigue, which were not significantly different between the two groups (P=0.819) (**Table 1**).

Among echocardiography findings, only LVEF had a significant statistical difference between the two group (P=0.024), which was lower in patients with insufficient vitamin D (20.66±10.91 vs. 23.98±11.82%). Moreover, vitamin D deficiency was related to previous hospitalization of patients (P=0.038) and it had no association with length of hospitalization. The incidence of edema (P=0.008) and arrhythmia (P=0.005) was higher in patients with insufficient vitamin D. Based on our findings,

higher rate of mortality was seen in patients with insufficient levels of vitamin D during hospitalization, but it was not significant (P=0.236). From 11 patients who died, only 3 of them had sufficient level of vitamin D (**Table 2**).

Based on logistic regression analysis, only history of hospitalization showed a significant relationship with vitamin D (OR: 1.725, CI 1.029-2.894, P=0.039) (**Table 3**).

According to multivariate linear regression, only gender and HF with p-value of 0.006 and standard deviation of 1.545 revealed significant difference (**Table 4**).

Variables		Vitamin D		<i>P</i> -value	
		Sufficient	Insufficient		
Age (years)		66.91±14.38	63.88±13.74	0.142	
Gender	Male	47 (29.6)	112 (70.4)	0.015	
	Female	44 (44.4)	55 (55.6)		
Medical history	HTN	51 (56)	99 (59.3)	0.614	
	HLP	69 (41.3)	33 (36.3)	0.428	
	DM	34 (37.4)	68 (40.7)	0.598	
	CKD	15 (16.5)	18 (10.8)	0.19	
Smoking		26 (28.6)	52 (31.1)	0.668	
History of hospitalization		39 (29.1)	95 (70.9)	0.038	

Variables		Vitamin D		<i>P</i> -value
		Sufficient	Insufficient	
Echocardiographic findings	EF (%)	23.98±11.82	20.66±10.91	0.024
	LVH	46 (35.4%)	84 (64.6%)	0.987
	RV-dilation	9 (22.5%)	31 (77.6%)	0.06
	Valvular disorders	85 (36.2%)	150 (63.8%)	0.388
NYHA_FC	2	11 (12.1%)	16 (9.6%)	0.819
	3	24 (26.4%)	46 (27.5%)	
	4	56 (61.5%)	105 (62.9%)	
Chest pain		40 (39.2%)	62 (60.8%)	0.284
Edema		24 (25%)	72 (75%)	0.008
Arrhythmia		43 (28.3%)	109 (71.7%)	0.005
Length of hospitalization (days)		5.40 ± 26.1	5.86 ± 4.90	0.321
Mortality		3 (27.2%)	8 (72.7%)	0.236

Table 3. Logistic regression analysis of relation between vitamin D and clinical variables.					
Variables	OR	95% CI	P-value		
LVH	1.004	0.600-1.680	0.987		
RV-dilation	2.114	0.957–4.667	0.064		
Valvular disorders	1.587	0.552-4.558	0.391		
History of hospitalization	1.725	1.029–2.894	0.039		
OR: Odds Ratio; CI: Confidence	nterval; LVH: Left Ventricular I	Hypertrophy; RV: Right Ventricula	r		

Table 4. Multivariate linear regression for heart failure and covariates.				
Variable	β	Standard Error	P-value	
Vitamin D Level	0.062	0.047	0.183	
Age	0.016	0.052	0.766	
Gender	4.259	1.545	0.006	
Smoker	1.4	1.616	0.387	
Diabetes Mellitus	-1.607	1.497	0.284	
Hypertension	-0.768	1.535	0.617	
Hyperlipidemia	-0.148	1.493	0.921	
Reference categories: Male	gender), non-smoker (smok	ing status), absence of condition (medic	al history).	

Discussion

Recent studies have shown that vitamin D deficiency is very common in people with HF [12,13]. Vitamin D as an essential micronutrient is associated with a higher risk of CVDs and mortality [8-10]. In this study, we evaluate the relationship between serum vitamin D levels during hospitalization and clinical outcomes in hospitalized patients with HF. Based on our findings, patients who had lower vitamin D levels, had lower LVEF on echocardiography. In line with our findings, Naghedi et al. revelad that vitamin D supplements can be significantly effective in increasing the EF as the most important and common index of myocardial function [14]. In addition, Zhao et al.'s study found a significant positive effect of vitamin D supplementation on EF [18]. Contrary to our findings, Wang et al. and Jiang et al. reported no effect of vitamin D levels on LVEF [19,20]. Moreover, it has been shown that, vitamin D positively affect left ventricular (LV) structure and function [21].

In our study, insufficient vitamin D was in relation with history of hospitalization in patients with HF. There is not a unanimous agreement on the ideal vitamin D levels [7]. Based on a prevouse study, measuring serum 25(OH)D levels within the first 24 hours of admission to the intensive care unit (ICU), can help identify patients who are at an elevated risk for extended hospital stays, readmission, and mortality [22].

Patients who had insufficient vitamin D levels, had a higher prevalence of arrhythmia and edema and this indicates the chronicity and advanced phase of the disease in this group. Systemic edema is commonly observed in patients with a history of chronic HF, particularly in more advanced stages of the disease [23]. Additionally, a deficiency in vitamin D can lead to uninhibited activation of the renin-angiotensinaldosterone system (RAAS), which exacerbates HF by causing the retention of salt and water [24]. Similary in another study by Porto et al., low vitamin D level were shown to be associated with an increased risk of developing HF and cardiac arrhythmias [25]. The other study indicates that the levels of vitamin D and calcium in the blood, as well as their relationship in patients with cardiac arrhythmia, play a crucial role in the pathophysiology of this condition [26]. Forman et al. found that insufficient vitamin D levels lead to an overactive RAAS. This results in elevated aldosterone levels and subsequent hypokalemia, increasing the risk of ventricular arrhythmias [27]. Additionally, an elevated concentration of parathyroid hormone may contribute to arrhythmias in individuals with ischemic heart disease. Factors such as low vitamin D levels, inadequate calcium intake, and renal calcium leakage due to salt sensitivity and aging contribute to chronic, moderate increases in parathyroid hormone. These hormonal changes can lead to weight gain, insulin resistance, high blood pressure, and LVH [28]. One of the limitations of our study was the exclusion of right ventricular (RV) function assessment, as it was not assessed uniformly across all patients.

Mirrazeghi SF, Monajemi P, Hassanipour S, Borghei Y, Arami S. Association of Vitamin D Serum Levels with Clinical Outcomes in Patients with Acute Decompensated Heart Failure. J Clin Cardiol. 2025;6(2):142–147.

Conclusion

The present study was designed to determine the association between vitamin D levels and ADHF presentations. It found that insufficient vitamin D levels (<30 ng/ml) were associated with lower LVEF, a higher frequency of hospitalizations, increased edema, and more frequent arrhythmias. These findings highlight the importance of monitoring serum vitamin D levels to improve clinical outcomes in patients with ADHF.

Conflict of Interest

The authors declared no conflict of interest.

Funding

This study received no fund.

Ethical Statement

This study complies with the Declaration of Helsinki. Ethical approval code was obtained from Guilan University of Medical Sciences (code: IR.GUMS.REC.1401.009).

References

- Aparicio-Ugarriza R, Salguero D, Mohammed YN, Ferri-Guerra J, Baskaran DJ, Mirabbasi SA, et al. Is vitamin D deficiency related to a higher risk of hospitalization and mortality in veterans with heart failure? Maturitas. 2020 Feb;132:30–4.
- Shahim B, Kapelios CJ, Savarese G, Lund LH. Global Public Health Burden of Heart Failure: An Updated Review. Card Fail Rev. 2023 Jul 27;9:e11.
- 3. Hagău AC, Puşcaş A, Togănel R, Muntean I. Is Hypovitaminosis D a Risk Factor for Heart Failure? Life (Basel). 2023 Jan 29;13(2):372.
- Allen LA, O'Connor CM. Management of acute decompensated heart failure. CMAJ. 2007 Mar 13;176(6):797–805.
- Delcoa A, Portmanna A, Mikaila N, Rossia A, Haidera A, Bengsa S, et al. Impact of sex and gender on heart failure. Cardiovasc Med. 2023;26(03):88.
- Curry SJ, Krist AH, Owens DK, Barry MJ, Caughey AB, Davidson KW, et al. Risk Assessment for Cardiovascular Disease With Nontraditional Risk Factors: US Preventive Services Task Force Recommendation Statement. JAMA. 2018 Jul 17;320(3):272–80.
- 7. Cosentino N, Campodonico J, Milazzo V, De Metrio M, Brambilla M, Camera M, et al. Vitamin D and Cardiovascular Disease: Current Evidence and Future Perspectives. Nutrients. 2021 Oct 14;13(10):3603.
- Fan X, Wang J, Song M, Giovannucci EL, Ma H, Jin G, et al. Vitamin
 D Status and Risk of All-Cause and Cause-Specific Mortality in
 a Large Cohort: Results From the UK Biobank. J Clin Endocrinol

Metab. 2020 Oct 1;105(10):dgaa432.

- 9. Brinkley DM, Ali OM, Zalawadiya SK, Wang TJ. Vitamin D and Heart Failure. Curr Heart Fail Rep. 2017 Oct;14(5):410–20.
- Nakashima A, Yokoyama K, Yokoo T, Urashima M. Role of vitamin D in diabetes mellitus and chronic kidney disease. World J Diabetes. 2016 Mar 10;7(5):89–100.
- Salari A, Mazouri A, Borghei Y, Karami S, Kheirkhah J, Mirbolouk F. Roles of Serum Parathyroid Hormone and Vitamin D Levels in Severity of Coronary Artery Disease and Left Ventricular Systolic Function. Int Cardiovasc Res J. 2023 Jun 1;17(2):e139878.
- 12. Latic N, Erben RG. Vitamin D and Cardiovascular Disease, with Emphasis on Hypertension, Atherosclerosis, and Heart Failure. Int J Mol Sci. 2020 Sep 4;21(18):6483.
- Zhou A, Selvanayagam JB, Hyppönen E. Non-linear Mendelian randomization analyses support a role for vitamin D deficiency in cardiovascular disease risk. Eur Heart J. 2022 May 7;43(18):1731– 9.
- Naghedi A, Haghaninejad H, Varastehravan H, Naghedi A, Farshadi N. Effect of vitamin D supplements on left ventricular ejection fraction in patients with heart failure: A systematic review and meta-analysis of randomized controlled trials. Rev Port Cardiol (Engl Ed). 2021 Jun;40(6):447–55.
- 15. Zittermann A, Trummer C, Theiler-Schwetz V, Lerchbaum E, März W, Pilz S. Vitamin D and Cardiovascular Disease: An Updated Narrative Review. Int J Mol Sci. 2021 Mar 12;22(6):2896.
- 16. Zittermann A. Vitamin D Status, Supplementation and Cardiovascular Disease. Anticancer Res. 2018 Feb;38(2):1179–86.
- 17. Amin A, Minaee S, Chitsazan M, Naderi N, Taghavi S, Ardeshiri M. Can vitamin D supplementation improve the severity of congestive heart failure? Congest Heart Fail. 2013 Jul-Aug;19(4):E22-8.
- 18. Zhao JD, Jia JJ, Dong PS, Zhao D, Yang XM, Li DL, et al. Effect of vitamin D on ventricular remodelling in heart failure: a meta-analysis of randomised controlled trials. BMJ Open. 2018 Aug 30;8(8):e020545.
- 19. Wang T, Liu Z, Fu J, Min Z. Meta-analysis of vitamin D supplementation in the treatment of chronic heart failure. Scand Cardiovasc J. 2019 Jun;53(3):110–6.
- Jiang WL, Gu HB, Zhang YF, Xia QQ, Qi J, Chen JC. Vitamin D Supplementation in the Treatment of Chronic Heart Failure: A Meta-analysis of Randomized Controlled Trials. Clin Cardiol. 2016 Jan;39(1):56–61.
- 21. Witte KK, Byrom R, Gierula J, Paton MF, Jamil HA, Lowry JE, et al. Effects of Vitamin D on Cardiac Function in Patients With Chronic HF: The VINDICATE Study. J Am Coll Cardiol. 2016 Jun 7;67(22):2593–603.
- Quraishi SA, Bittner EA, Blum L, McCarthy CM, Bhan I, Camargo CA Jr. Prospective study of vitamin D status at initiation of care

Mirrazeghi SF, Monajemi P, Hassanipour S, Borghei Y, Arami S. Association of Vitamin D Serum Levels with Clinical Outcomes in Patients with Acute Decompensated Heart Failure. J Clin Cardiol. 2025;6(2):142–147.

- in critically ill surgical patients and risk of 90-day mortality. Crit Care Med. 2014 Jun;42(6):1365–71.
- 23. Bauersachs J, Soltani S. Guidelines of the ESC 2021 on heart failure. Herz. 2022:1-7.
- 24. Busa V, Dardeir A, Marudhai S, Patel M, Valaiyaduppu Subas S, Ghani MR, et al. Role of Vitamin D Supplementation in Heart Failure Patients With Vitamin D Deficiency and Its Effects on Clinical Outcomes: A Literature Review. Cureus. 2020 Oct 7;12(10):e10840.
- 25. Porto CM, Silva VL, da Luz JSB, Filho BM, da Silveira VM. Association between vitamin D deficiency and heart failure risk

- in the elderly. ESC Heart Fail. 2018 Feb;5(1):63-74.
- 26. Qahwaji DM, Serafi AS. Association of serum vitamin D and calcium in patients with cardiac arrhythmia. Int J Biol Biotech. 2021;18(1): 39-44.
- Forman JP, Giovannucci E, Holmes MD, Bischoff-Ferrari HA, Tworoger SS, Willett WC, et al. Plasma 25-hydroxyvitamin D levels and risk of incident hypertension. Hypertension. 2007 May;49(5):1063–9.
- 28. Barsan M, Brata AM, Ismaiel A, Dumitrascu DI, Badulescu AV, Duse TA, et al. The Pathogenesis of Cardiac Arrhythmias in Vitamin D Deficiency. Biomedicines. 2022 May 26;10(6):1239.