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Introduction: EEG at the Edge

The evolution of electroencephalography (EEG) reflects the 
broader trajectory of neuroscience itself: from analog traces 
of alpha waves to today’s cloud-integrated, AI-enhanced 
signal architectures. In our recent work [1], we traced this 
development through historical and conceptual milestones, 
positioning EEG as both a reflection of brain function and a 
catalyst for emerging neurotechnological paradigms. Yet the 
trajectory is far from linear. Innovations such as wearable 

EEG, digital biomarkers, brain-computer interfaces, and 
brain-to-brain communication [2] are not just refinements 
of earlier models, they signal a qualitative change. EEG is no 
longer confined to clinical diagnostics or laboratory research. 
It is migrating toward real-time, adaptive applications 
in rehabilitation, consumer neurotech, and behavioral 
modulation [3]. The brain is no longer treated as a closed 
system, but increasingly approached as a dynamic, responsive 
node within larger technological and social networks.
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In this commentary, we reflect on this transitional moment: 
a threshold where EEG moves beyond signal acquisition 
to become a medium of agency, mediation, and even 
transformation. What are the implications of connecting 
minds to machines, and, perhaps, to each other? How do we 
safeguard autonomy, intention, and identity in a landscape 
where cognition itself may be distributed? EEG is no longer 
merely a tool of measurement. It is a mirror, and what it 
reflects depends not only on how we build, but also on how 
we choose to see.

The Digital Present: Unlocking Potential, Confronting 
Limitations

Over the past three decades, electroencephalography 
has undergone a profound digital transformation. What 
began as simple signal digitization has evolved into a 
sophisticated ecosystem enabling multimodal integration, 
cloud-based analytics, and high-throughput data acquisition. 
Modern EEG systems combine high-resolution, artifact-
resistant amplifiers with modular architectures designed 
for integration across clinical and research settings. On the 
software side, a wide array of analytical tools - some already 
implemented in commercial platforms, others emerging from 
recent research - enable advanced signal processing These 
include preprocessing workflows [4], ICA decomposition 
[5], non-linear feature extraction, such as entropy or fractal 
dimension [6,7], coherence and connectivity analysis [8], and 
source localization [9]. Although some of these techniques 
are not yet widely implemented in commercial systems, they 
represent promising directions for the future of advanced 
EEG analysis. Together, these advances are reshaping both 
clinical workflows and experimental protocols in cognitive 
neuroscience.

Recent applications reflect this shift. EEG now supports 
real-time monitoring of mental workload in high-stakes 
environments [10], decoding of affective states [11], and 
neurofeedback for conditions such as attention deficit 
hyperactivity disorder (ADHD) and anxiety [12].

Ambulatory platforms allow for continuous epilepsy 
monitoring [13], frequently complemented by video-EEG, 
which remains a cornerstone in cases where the temporal 
correlation between electrical activity and behavioral 
manifestations is crucial for accurate diagnosis, particularly 
when standard EEG alone proves inconclusive [14]. These 
platforms are increasingly used in sleep diagnostics, and 
cognitive profiling in aging populations [15].

In parallel, the rise of wearable and consumer-grade EEG 
has catalyzed research outside the lab, powering studies in 
neuromarketing [16], adaptive learning [17], and real-world 
neuroergonomics [18].

Yet limitations persist. Signal quality in mobile configurations 
remains susceptible to motion artifacts and environmental 
noise. The sheer scale of EEG data often exceeds our ability to 
extract clinically actionable insights, particularly in longitudinal 
contexts. A lack of harmonized acquisition protocols and the 
proliferation of proprietary formats hamper interoperability 
and reproducibility. Moreover, while commercial systems 
increasingly promote plug-and-play simplicity, routine clinical 
deployment still faces with calibration demands, technician 
variability, and interpretive bottlenecks.

What emerges is a paradox: EEG has never been more 
powerful, yet it is rarely frictionless. Moving forward requires 
more than smarter hardware or advanced analytics. It demands 
a conceptual shift: from collecting ever-larger datasets 
to deriving ecologically valid, interpretable, and clinically 
meaningful insights. EEG must not only evolve technically; 
it must become functionally responsive to the contexts and 
decisions that define patient care.

Closed-Loop EEG Systems: When the Brain Talks Back

If digital EEG platforms have taught us to listen to the 
brain, closed-loop systems challenge us to speak back. What 
happens when the EEG signal does not end in a database, 
but triggers an action, autonomously, and in real time? 
The traditional role of EEG as a passive monitoring tool is 
being redefined by the emergence of closed-loop systems, 
neurotechnologies capable of detecting specific brain activity 
patterns in real time and delivering targeted stimulation in 
response. These systems represent a shift from observation to 
interaction, enabling the brain not only to be read, but also to 
be modulated dynamically.

One of the most established clinical examples is the 
NeuroPace RNS® (Responsive Neurostimulation) System 
for drug-resistant focal epilepsy. Unlike open-loop devices 
that deliver stimulation at fixed intervals, RNS continuously 
monitors intracranial EEG and administers electrical pulses 
in response to detected seizure-like activity. Recent evidence 
shows that, beyond seizure suppression, RNS may also 
preserve or improve cognitive outcomes and mood, especially 
when the epileptogenic focus is on the left temporal lobe [19]. 
However, seizure patterns often evolve unpredictably over 
time, occasionally bypassing preset detection thresholds. 
These dynamics highlight the need for adaptive algorithms and 
AI-assisted reprogramming [20]. In parallel, machine learning 
techniques such as vision transformers are being explored to 
distinguish physiological ripples from pathological discharges 
in iEEG, enhancing accuracy and specificity [21].

In Parkinson’s disease, closed-loop adaptive deep brain 
stimulation (aDBS) is rapidly gaining traction. These systems 
modulate stimulation based on oscillatory biomarkers like beta-
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band and finely tuned gamma activity. A multicenter study by 
Li and colleagues [22] found that aDBS targeting subthalamic 
beta bursts significantly improved motor outcomes and 
reduced reliance on medication. Gamma oscillations have 
emerged as reliable biomarkers for tracking medication cycles 
in naturalistic settings [23], and the feasibility of in-home 
adaptive stimulation has been demonstrated using the RC+S 
platform [24]. Additional evidence reinforces the potential of 
rhythm-responsive neuromodulation to alleviate symptoms 
such as freezing of gait [25,26]. Collectively, this growing body 
of research points toward a shift to intelligent, personalized 
DBS systems that adapt to patients’ neurophysiological states 
in real time. 

Emerging applications extend to neuropsychiatric conditions 
as well. Experimental systems coupling EEG with non-invasive 
modalities like transcranial alternating current stimulation 
(tACS) or focused ultrasound are being tested for depression, 
obsessive compulsive disorder, and cognitive decline, 
responsive to both brain state and behavioral context [27,28].

Yet the promise of closed-loop systems brings new complexity: 
algorithmic latency, inter-individual variability, and ethical 
concerns related to autonomy and unintended modulation. 
Still, these challenges may signal a new therapeutic frontier, 
where the brain not only expresses dysfunction, but actively 
participates in its own restoration.

Multimodal EEG: When One Modality isn’t Enough

EEG offers unmatched temporal resolution, but its spatial 
limitations have long constrained its interpretability. To address 
this, researchers increasingly turn to multimodal integration 
— particularly with functional MRI (fMRI) and near-infrared 
spectroscopy (fNIRS), to combine fast electrophysiological 
dynamics with the spatial precision of hemodynamic signals. 
These hybrid paradigms allow for a richer, more layered 
understanding of brain activity.

In cognitive neuroscience and clinical neurology, EEG-fMRI 
has become a powerful tool. Simultaneous recordings enable 
researchers to align EEG events, such as epileptic spikes or 
task-related potentials with BOLD signals, enhancing both 
spatial and temporal resolution. Beyond classical applications 
in resting-state analysis, emotion regulation, and seizure 
localization, recent studies highlight the expanding utility of 
EEG-fMRI integration. Dynamic EEG spectral power has been 
shown to correlate with evolving fMRI network topologies 
during rest [29], and links between alpha/beta rhythms and 
BOLD activity have been observed in affective and motor 
domains, including depression and motor imagery tasks 
[30]. In parallel, EEG-fNIRS offers a portable and cost-effective 
alternative better suited for real-world applications. This dual-
modality setup enables neurovascular coupling analysis in 

naturalistic settings, such as neurorehabilitation, pediatric 
research, and bedside monitoring [31]. It has shown promise 
in conditions like ADHD, stroke, and infantile epilepsy, offering 
insights where MRI is impractical or inaccessible.

As EEG becomes increasingly wearable and cloud-enabled, 
multimodal integration is poised to become the new standard, 
not only in research, but in diagnostics, neurofeedback, and 
personalized BCI design. In this context, EEG no longer serves 
merely as a standalone signal: it becomes a convergence point 
for neural data streams, contextual information, and adaptive 
control, expanding the horizon of what brain monitoring and 
modulation can achieve.

Brain-Computer Interfaces: From Promise to Practice: At 
What Cost?

As EEG systems become more accurate and integrated 
with other modalities, a new horizon emerges: using brain 
activity not just to reflect, but to act. Brain-computer 
interfaces (BCIs) transform neural signals into actionable 
commands, enabling users to control external devices by 
intention alone. Over the past decade, EEG-based BCIs have 
progressed from experimental systems to practical tools for 
motor rehabilitation, assistive communication, and cognitive 
enhancement.

Users can now navigate spelling interfaces using P300 
responses [32,33], operate devices through motor 
imagery [34,35], or control external systems via steady-
state visual evoked potentials [36]. These paradigms 
underpin a growing range of clinical applications, including 
communication support in locked-in syndrome, post-stroke 
neurorehabilitation, and mobility enhancement through 
smart wheelchairs and exoskeletons [37].

Yet translating these capabilities into everyday settings 
remains difficult. Real-time BCI use often demands 
lengthy calibration, stable signal acquisition, and intense 
concentration, factors that challenge long-term usability. Inter-
subject variability further limits generalizability, requiring 
frequent manual tuning. Many users experience cognitive 
overload when modulating brain rhythms, and 15–30% fail to 
achieve effective control altogether, a phenomenon known as 
“BCI illiteracy” [38].

Recent research points toward a more adaptive and 
emotionally responsive BCI landscape. Current research offers 
a comprehensive overview of existing EEG systems and their 
limitations [39], alongside streamlined decoding pipelines 
that improve classification accuracy while minimizing 
computational demands [17,40]. In the affective domain, 
transformer-based models such as the Multi-Brain Regions 
Spatiotemporal Collaboration transformer (MBRSTC former) 
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have been proposed for EEG-driven emotion recognition [41], 
while other work emphasizes the critical role of interpretability 
and cross-cultural generalizability in model design [42]. Since 
non-stationarities arising from mental state fluctuations or 
device-related factors can impair BCI performance, adaptive 
systems capable of real-time adjustment have been proposed. 
These include paradigms that integrate error-related 
potentials into reinforcement learning loops to optimize 
control [43], as well as dual-mode systems combining SSVEP 
and P300 signals to enhance performance and reliability 
[44]. These trends reveal a field moving beyond monolithic 
signal interpretation toward multi-modal, adaptive, and user-
centered architectures. EEG is increasingly used alongside 
EMG, EOG, and eye-tracking to reduce cognitive load and 
improve resilience [45,46]. Simultaneously, AI-driven meta-
classifiers and context-aware protocols are being developed to 
detect shifts in attention, fatigue, or engagement, dynamically 
adjusting system behavior [47].

The question is no longer whether BCIs can function, but for 
whom, and under what conditions, they can truly empower. 
Balancing performance with usability, personalization with 
scalability, and innovation with ethical foresight remains the 
defining challenge of this next generation of neural interfaces.

AI and Machine Learning: From Signal to Insight

Raw control is nothing without intelligent interpretation. As 
EEG systems generate ever-larger and more complex datasets 
— through long-term monitoring, wearable platforms, and 
brain-computer interfaces — the need for automated, scalable, 
and adaptive analysis becomes critical. This is where artificial 
intelligence (AI) and machine learning (ML) are reshaping the 
neurotechnology landscape, not to replace clinicians, but to 
amplify their interpretive power [48].

Traditional EEG analysis relies on expert-driven feature 
extraction and visual inspection, which are time-consuming 
and susceptible to inter-rater variability. In contrast, 
ML algorithms can detect patterns in raw or minimally 
preprocessed EEG, enabling tasks such as seizure detection, 
sleep stage classification, cognitive and affective state 
decoding, and real-time BCI signal interpretation [49,50]. 
Especially in high-pressure environments, like the ICU or 
neonatal monitoring, automated anomaly detection can 
reduce time to diagnosis and increase clinical responsiveness.

Recent studies have demonstrated that deep learning 
architectures, including convolutional and recurrent neural 
networks, often outperform traditional classifiers in detecting 
epileptiform discharges and estimating mental workload [50]. 
Hybrid pipelines are also emerging: the SCORE-AI system, for 
example, combines feature engineering with deep models 
and has shown expert-level performance in multicenter 

validations [48]. These tools are beginning to find their place 
in routine workflows, functioning as decision-support systems 
in clinical EEG reading.

In BCIs, AI unlocks adaptability. Classifiers that evolve in 
response to user-specific dynamics, like fatigue, drift, or 
attentional shifts, are key to overcoming “BCI illiteracy” and 
enabling personalized decoding [51]. Reinforcement learning 
and meta-classification are being employed to tune system 
responses in real time, improving usability and long-term 
engagement [52].

However, this progress comes with new questions. How do 
we ensure transparency in deep models operating on sensitive 
neurodata? What are the ethical implications of algorithmic 
recommendations in diagnosis or therapy? And how do we 
validate these systems across populations, pathologies, and 
recording conditions?

As EEG moves toward real-time, high-volume, and user-
centered applications, AI is no longer a mere add-on. It is 
becoming a co-pilot in the journey from signal to insight — 
helping us not just to process more data, but to ask better 
questions of the brain.

Brain-to-Brain Interfaces: Interfaces or Interferences?

At the intersection of algorithms and agency lies a 
radical threshold: not just brain-machine, but brain-to-
brain communication. While BCIs have matured into viable 
clinical tools, brain-to-brain interfaces (B2BIs) remain at the 
speculative frontier, provocative, experimental, and ethically 
charged. These systems aim to transmit information directly 
between two brains, coupling EEG-based decoding in a 
“Sender” with neurostimulation, via transcranial magnetic 
stimulation (TMS), tACS, or focused ultrasound, in a “Receiver” 
[53].

Early human studies have demonstrated binary 
communication using non-invasive B2BIs, including 
paradigms where a participant mentally triggers a “fire” 
command that is transmitted across the internet and executed 
through TMS-induced motor activation in another individual 
[54]. However, this form of stimulation appears to have faded 
from current research efforts, with no studies published after 
2021 replicating or extending such paradigms. A recent 
review confirms this trend, noting the absence of post-2021 
experimental replications and highlighting a shift in focus 
toward alternative B2BI architectures [55]. Other experiments 
have used SSVEP-based encoding to coordinate cooperative 
tasks, including collaborative paradigms such as multi-user 
interfaces and brain-to-brain interaction systems [56]. While 
still rudimentary, these approaches demonstrate the technical 
feasibility of direct neural influence.
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Beyond the lab, B2BI is being explored in conceptual 
frameworks for neurorehabilitation, such as the use of 
synchronized tACS to enhance neural entrainment between 
therapist and patient, potentially amplifying recovery through 
interpersonal synchrony [57]. Though largely theoretical, 
these ideas reflect a growing interest in inter-brain dynamics 
as a therapeutic axis.

Yet as B2BI shifts from “reading” to “influencing” another 
mind, it blurs foundational ethical boundaries: Where does my 
intention end and yours begin? If a motor action is induced 
by an external brain signal, who is responsible, the sender, the 
receiver, or both? These dilemmas become sharper in multi-
agent systems and clinical or military contexts [58].

Additional concerns arise around neural privacy. Sharing 
brain signals may inadvertently expose emotional states, 
intentions, or diagnoses, raising the specter of neurohacking, 
manipulation, or psychological overreach. As Elisabeth Hildt 
notes, “B2BIs are not only instruments of communication, but 
also instruments of co-agency” [59]. This notion has recently 
been echoed and expanded in the context of neurotechnology 
ethics, where co-agency is reframed as relational agency 
between users and devices, highlighting the shared nature of 
autonomy and identity in technologically mediated cognition 
[60].

To responsibly explore B2BI, ethics must run in lockstep with 
engineering. We need protocols for meaningful consent that 
extend beyond procedural checklists. We must ensure that 
receivers can distinguish internal thoughts from externally 
induced states and that architectures remain transparent and 
auditable. Above all, we must affirm the sanctity of cognitive 
sovereignty, the right to control not only what we express, 
but what we absorb [61]. This imperative becomes even 
more urgent as research moves toward large-scale brain-
computer constellations, where identity, autonomy, and 
accountability may be distributed across networks of minds. 
Recent proposals for decentralized cognitive architectures, 
such as ‘Mind plexes’ and ‘Cloud minds’, raise profound 
questions about how privacy, responsibility, and agency can 
be preserved in collective systems [62]. We may soon be able 
to transmit thoughts. The deeper question is: Are we ready to 
share responsibility for them?

Conclusion: Vision Demands Responsibility

Electroencephalography (EEG) remains one of the 
most widely used tools for diagnosing and monitoring 
neurological disorders, including epilepsy, sleep disturbances, 
encephalopathies, and altered states of consciousness. Its 
ability to provide real-time insight into the brain’s electrical 
activity makes it an essential instrument for clinical practice 
and research. However, EEG is no longer confined to capturing 
brain activity, it is evolving into a dynamic interface through 

which we communicate, adapt, and act. 

As EEG systems evolve into multimodal, adaptive, and cloud-
connected infrastructures, they move from instruments to 
architectures. From digital EEG platforms and closed-loop 
systems to BCIs and experimental brain-to-brain interfaces, 
the technological curve is steep and accelerating. Innovations 
once unthinkable are now accessible, often freely, while others 
remain secluded in experimental labs or restricted domains.

But as neurotechnologies extend their reach, the notion of 
the individual itself begins to shift. In a future where brains 
are networked with machines, and perhaps even with other 
minds, where is the boundary of self? Do our thoughts remain 
ours, or are they co-authored by systems we cannot fully 
perceive? Are our actions truly autonomous, or subtly shaped 
by predictive systems that anticipate and nudge behavior? 
These are no longer questions for science fiction, but 
emerging realities in military research, assistive technologies, 
and consumer neurotech. As interfaces evolve from tools to 
infrastructures, we risk dissolving the individual into a larger 
system, technologically powerful, but ethically opaque. And 
here a deeper uncertainty emerges: who controls the system? 
Who sets the thresholds, tunes the models, governs the flow of 
neural information across platforms and protocols? In a hybrid 
brain-machine network, actions are no longer just a matter of 
personal autonomy, they become a question of control.

Preserving human agency means more than enabling choice; 
it means protecting the very space where choices are possible.

The future of EEG requires not only technical innovation 
but also philosophical clarity. Because as we build systems 
that listen to the brain and speak back, the ultimate question 
becomes: what kind of selves are we designing for, and what 
kind of world are we wiring them into?
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