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Abstract

Electroencephalography (EEG) is undergoing a profound transformation, from a passive diagnostic tool to an active interface for
communication, intervention, and neuroadaptive control. This commentary explores the current state and future trajectories of EEG-based
technologies, focusing on emerging paradigms that redefine the role of the brain within technological and therapeutic environments.

We begin by examining the digital present: while EEG systems are now more portable, connected, and computationally empowered than ever
before, technical limitations and interpretive bottlenecks persist. We then trace the rise of closed-loop neuromodulation, with clinical evidence
supporting personalized, responsive stimulation in epilepsy and Parkinson’s disease. In parallel, multimodal EEG, particularly EEG-fMRI and
EEG-fNIRS integration, is offering unprecedented insights into spatiotemporal brain dynamics, cognitive biomarkers, and neurovascular
coupling.

The development of brain-computer interfaces (BCls) further illustrates EEG’s shift from monitoring to action, as neural signals become
control inputs for communication, rehabilitation, and assistive technologies. Recent innovations in Al and machine learning are accelerating
this trend, enabling real-time decoding, anomaly detection, and adaptive user-specific pipelines. At the frontier of this evolution lie brain-to-
brain interfaces (B2BIs), experimental systems that challenge notions of agency, responsibility, and cognitive sovereignty by enabling direct
neural communication between individuals.

Across these domains, a central theme emerges: innovation must be accompanied by reflection. We argue that EEG is no longer just a measure
of brain activity; it is becoming a medium of agency, and with it, a mirror for our evolving relationship with technology, autonomy, and
selfhood. Building that future demands not only technical precision, but also ethical foresight and interdisciplinary collaboration.

Keywords: Electroencephalography (EEG), Digital neurotechnology, Closed-loop neuromodulation, Multimodal brain monitoring, Brain—
computer interface (BCl), Artificial intelligence, Machine learning, Brain-to-brain communication, Neuro ethics, Cognitive sovereignty

Introduction: EEG at the Edge

The evolution of electroencephalography (EEG) reflects the
broader trajectory of neuroscience itself: from analog traces
of alpha waves to today’s cloud-integrated, Al-enhanced
signal architectures. In our recent work [1], we traced this
development through historical and conceptual milestones,
positioning EEG as both a reflection of brain function and a
catalyst for emerging neurotechnological paradigms. Yet the
trajectory is far from linear. Innovations such as wearable

EEG, digital biomarkers, brain-computer interfaces, and
brain-to-brain communication [2] are not just refinements
of earlier models, they signal a qualitative change. EEG is no
longer confined to clinical diagnostics or laboratory research.
It is migrating toward real-time, adaptive applications
in rehabilitation, consumer neurotech, and behavioral
modulation [3]. The brain is no longer treated as a closed
system, but increasingly approached as a dynamic, responsive
node within larger technological and social networks.
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In this commentary, we reflect on this transitional moment:
a threshold where EEG moves beyond signal acquisition
to become a medium of agency, mediation, and even
transformation. What are the implications of connecting
minds to machines, and, perhaps, to each other? How do we
safeguard autonomy, intention, and identity in a landscape
where cognition itself may be distributed? EEG is no longer
merely a tool of measurement. It is a mirror, and what it
reflects depends not only on how we build, but also on how
we choose to see.

The Digital Present: Unlocking Potential, Confronting
Limitations

Over the past three decades, electroencephalography
has undergone a profound digital transformation. What
began as simple signal digitization has evolved into a
sophisticated ecosystem enabling multimodal integration,
cloud-based analytics, and high-throughput data acquisition.
Modern EEG systems combine high-resolution, artifact-
resistant amplifiers with modular architectures designed
for integration across clinical and research settings. On the
software side, a wide array of analytical tools - some already
implemented in commercial platforms, others emerging from
recent research - enable advanced signal processing These
include preprocessing workflows [4], ICA decomposition
[5], non-linear feature extraction, such as entropy or fractal
dimension [6,7], coherence and connectivity analysis [8], and
source localization [9]. Although some of these techniques
are not yet widely implemented in commercial systems, they
represent promising directions for the future of advanced
EEG analysis. Together, these advances are reshaping both
clinical workflows and experimental protocols in cognitive
neuroscience.

Recent applications reflect this shift. EEG now supports

real-time monitoring of mental workload in high-stakes
environments [10], decoding of affective states [11], and
neurofeedback for conditions such as attention deficit
hyperactivity disorder (ADHD) and anxiety [12].

Ambulatory platforms allow for continuous epilepsy
monitoring [13], frequently complemented by video-EEG,
which remains a cornerstone in cases where the temporal
correlation between electrical activity and behavioral
manifestations is crucial for accurate diagnosis, particularly
when standard EEG alone proves inconclusive [14]. These
platforms are increasingly used in sleep diagnostics, and
cognitive profiling in aging populations [15].

In parallel, the rise of wearable and consumer-grade EEG
has catalyzed research outside the lab, powering studies in
neuromarketing [16], adaptive learning [17], and real-world
neuroergonomics [18].

Yet limitations persist. Signal quality in mobile configurations
remains susceptible to motion artifacts and environmental
noise. The sheer scale of EEG data often exceeds our ability to
extractclinicallyactionableinsights, particularlyinlongitudinal
contexts. A lack of harmonized acquisition protocols and the
proliferation of proprietary formats hamper interoperability
and reproducibility. Moreover, while commercial systems
increasingly promote plug-and-play simplicity, routine clinical
deployment still faces with calibration demands, technician
variability, and interpretive bottlenecks.

What emerges is a paradox: EEG has never been more
powerful, yet it is rarely frictionless. Moving forward requires
more than smarter hardware oradvanced analytics. It demands
a conceptual shift: from collecting ever-larger datasets
to deriving ecologically valid, interpretable, and clinically
meaningful insights. EEG must not only evolve technically;
it must become functionally responsive to the contexts and
decisions that define patient care.

Closed-Loop EEG Systems: When the Brain Talks Back

If digital EEG platforms have taught us to listen to the
brain, closed-loop systems challenge us to speak back. What
happens when the EEG signal does not end in a database,
but triggers an action, autonomously, and in real time?
The traditional role of EEG as a passive monitoring tool is
being redefined by the emergence of closed-loop systems,
neurotechnologies capable of detecting specific brain activity
patterns in real time and delivering targeted stimulation in
response. These systems represent a shift from observation to
interaction, enabling the brain not only to be read, but also to
be modulated dynamically.

One of the most established clinical examples is the
NeuroPace RNS® (Responsive Neurostimulation) System
for drug-resistant focal epilepsy. Unlike open-loop devices
that deliver stimulation at fixed intervals, RNS continuously
monitors intracranial EEG and administers electrical pulses
in response to detected seizure-like activity. Recent evidence
shows that, beyond seizure suppression, RNS may also
preserve orimprove cognitive outcomes and mood, especially
when the epileptogenic focus is on the left temporal lobe [19].
However, seizure patterns often evolve unpredictably over
time, occasionally bypassing preset detection thresholds.
These dynamics highlight the need foradaptive algorithmsand
Al-assisted reprogramming [20]. In parallel, machine learning
techniques such as vision transformers are being explored to
distinguish physiological ripples from pathological discharges
in iEEG, enhancing accuracy and specificity [21].

In Parkinson’s disease, closed-loop adaptive deep brain
stimulation (aDBS) is rapidly gaining traction. These systems
modulatestimulation based onoscillatory biomarkerslike beta-
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band and finely tuned gamma activity. A multicenter study by
Li and colleagues [22] found that aDBS targeting subthalamic
beta bursts significantly improved motor outcomes and
reduced reliance on medication. Gamma oscillations have
emerged as reliable biomarkers for tracking medication cycles
in naturalistic settings [23], and the feasibility of in-home
adaptive stimulation has been demonstrated using the RC+S
platform [24]. Additional evidence reinforces the potential of
rhythm-responsive neuromodulation to alleviate symptoms
such as freezing of gait [25,26]. Collectively, this growing body
of research points toward a shift to intelligent, personalized
DBS systems that adapt to patients’ neurophysiological states
in real time.

Emerging applications extend to neuropsychiatric conditions
as well. Experimental systems coupling EEG with non-invasive
modalities like transcranial alternating current stimulation
(tACS) or focused ultrasound are being tested for depression,
obsessive compulsive disorder, and cognitive decline,
responsive to both brain state and behavioral context [27,28].

Yetthe promise of closed-loop systemsbringsnew complexity:
algorithmic latency, inter-individual variability, and ethical
concerns related to autonomy and unintended modulation.
Still, these challenges may signal a new therapeutic frontier,
where the brain not only expresses dysfunction, but actively
participates in its own restoration.

Multimodal EEG: When One Modality isn’t Enough

EEG offers unmatched temporal resolution, but its spatial
limitations have long constrained its interpretability. Toaddress
this, researchers increasingly turn to multimodal integration
— particularly with functional MRI (fMRI) and near-infrared
spectroscopy (fNIRS), to combine fast electrophysiological
dynamics with the spatial precision of hemodynamic signals.
These hybrid paradigms allow for a richer, more layered
understanding of brain activity.

In cognitive neuroscience and clinical neurology, EEG-fMRI
has become a powerful tool. Simultaneous recordings enable
researchers to align EEG events, such as epileptic spikes or
task-related potentials with BOLD signals, enhancing both
spatial and temporal resolution. Beyond classical applications
in resting-state analysis, emotion regulation, and seizure
localization, recent studies highlight the expanding utility of
EEG-fMRI integration. Dynamic EEG spectral power has been
shown to correlate with evolving fMRI network topologies
during rest [29], and links between alpha/beta rhythms and
BOLD activity have been observed in affective and motor
domains, including depression and motor imagery tasks
[30]. In parallel, EEG-fNIRS offers a portable and cost-effective
alternative better suited for real-world applications. This dual-
modality setup enables neurovascular coupling analysis in

naturalistic settings, such as neurorehabilitation, pediatric
research, and bedside monitoring [31]. It has shown promise
in conditions like ADHD, stroke, and infantile epilepsy, offering
insights where MRI is impractical or inaccessible.

As EEG becomes increasingly wearable and cloud-enabled,
multimodal integration is poised to become the new standard,
not only in research, but in diagnostics, neurofeedback, and
personalized BCl design. In this context, EEG no longer serves
merely as a standalone signal: it becomes a convergence point
for neural data streams, contextual information, and adaptive
control, expanding the horizon of what brain monitoring and
modulation can achieve.

Brain-Computer Interfaces: From Promise to Practice: At
What Cost?

As EEG systems become more accurate and integrated
with other modalities, a new horizon emerges: using brain
activity not just to reflect, but to act. Brain-computer
interfaces (BCls) transform neural signals into actionable
commands, enabling users to control external devices by
intention alone. Over the past decade, EEG-based BCls have
progressed from experimental systems to practical tools for
motor rehabilitation, assistive communication, and cognitive
enhancement.

Users can now navigate spelling interfaces using P300
responses [32,33], operate devices through motor
imagery [34,35], or control external systems via steady-
state visual evoked potentials [36]. These paradigms
underpin a growing range of clinical applications, including
communication support in locked-in syndrome, post-stroke
neurorehabilitation, and mobility enhancement through
smart wheelchairs and exoskeletons [37].

Yet translating these capabilities into everyday settings
remains difficult. Real-time BCl use often demands
lengthy calibration, stable signal acquisition, and intense
concentration, factors that challenge long-term usability. Inter-
subject variability further limits generalizability, requiring
frequent manual tuning. Many users experience cognitive
overload when modulating brain rhythms, and 15-30% fail to
achieve effective control altogether, a phenomenon known as
“BCl illiteracy” [38].

Recent research points toward a more adaptive and
emotionally responsive BCl landscape. Current research offers
a comprehensive overview of existing EEG systems and their
limitations [39], alongside streamlined decoding pipelines
that improve classification accuracy while minimizing
computational demands [17,40]. In the affective domain,
transformer-based models such as the Multi-Brain Regions
Spatiotemporal Collaboration transformer (MBRSTC former)
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have been proposed for EEG-driven emotion recognition [41],
while other work emphasizes the critical role of interpretability
and cross-cultural generalizability in model design [42]. Since
non-stationarities arising from mental state fluctuations or
device-related factors can impair BCl performance, adaptive
systems capable of real-time adjustment have been proposed.
These include paradigms that integrate error-related
potentials into reinforcement learning loops to optimize
control [43], as well as dual-mode systems combining SSVEP
and P300 signals to enhance performance and reliability
[44]. These trends reveal a field moving beyond monolithic
signal interpretation toward multi-modal, adaptive, and user-
centered architectures. EEG is increasingly used alongside
EMG, EOG, and eye-tracking to reduce cognitive load and
improve resilience [45,46]. Simultaneously, Al-driven meta-
classifiers and context-aware protocols are being developed to
detect shifts in attention, fatigue, or engagement, dynamically
adjusting system behavior [47].

The question is no longer whether BCls can function, but for
whom, and under what conditions, they can truly empower.
Balancing performance with usability, personalization with
scalability, and innovation with ethical foresight remains the
defining challenge of this next generation of neural interfaces.

Al and Machine Learning: From Signal to Insight

Raw control is nothing without intelligent interpretation. As
EEG systems generate ever-larger and more complex datasets
— through long-term monitoring, wearable platforms, and
brain-computerinterfaces — the need forautomated, scalable,
and adaptive analysis becomes critical. This is where artificial
intelligence (Al) and machine learning (ML) are reshaping the
neurotechnology landscape, not to replace clinicians, but to
amplify their interpretive power [48].

Traditional EEG analysis relies on expert-driven feature
extraction and visual inspection, which are time-consuming
and susceptible to inter-rater variability. In contrast,
ML algorithms can detect patterns in raw or minimally
preprocessed EEG, enabling tasks such as seizure detection,
sleep stage classification, cognitive and affective state
decoding, and real-time BCl signal interpretation [49,50].
Especially in high-pressure environments, like the ICU or
neonatal monitoring, automated anomaly detection can
reduce time to diagnosis and increase clinical responsiveness.

Recent studies have demonstrated that deep learning
architectures, including convolutional and recurrent neural
networks, often outperform traditional classifiers in detecting
epileptiform discharges and estimating mental workload [50].
Hybrid pipelines are also emerging: the SCORE-AI system, for
example, combines feature engineering with deep models
and has shown expert-level performance in multicenter

validations [48]. These tools are beginning to find their place
in routine workflows, functioning as decision-support systems
in clinical EEG reading.

In BCls, Al unlocks adaptability. Classifiers that evolve in
response to user-specific dynamics, like fatigue, drift, or
attentional shifts, are key to overcoming “BCl illiteracy” and
enabling personalized decoding [51]. Reinforcement learning
and meta-classification are being employed to tune system
responses in real time, improving usability and long-term
engagement [52].

However, this progress comes with new questions. How do
we ensure transparency in deep models operating on sensitive
neurodata? What are the ethical implications of algorithmic
recommendations in diagnosis or therapy? And how do we
validate these systems across populations, pathologies, and
recording conditions?

As EEG moves toward real-time, high-volume, and user-
centered applications, Al is no longer a mere add-on. It is
becoming a co-pilot in the journey from signal to insight —
helping us not just to process more data, but to ask better
questions of the brain.

Brain-to-Brain Interfaces: Interfaces or Interferences?

At the intersection of algorithms and agency lies a
radical threshold: not just brain-machine, but brain-to-
brain communication. While BCls have matured into viable
clinical tools, brain-to-brain interfaces (B2Bls) remain at the
speculative frontier, provocative, experimental, and ethically
charged. These systems aim to transmit information directly
between two brains, coupling EEG-based decoding in a
“Sender” with neurostimulation, via transcranial magnetic

stimulation (TMS), tACS, or focused ultrasound, in a “Receiver”
[53].

Early human studies have demonstrated binary
communication using non-invasive B2BIs, including
paradigms where a participant mentally triggers a “fire”
command that is transmitted across the internet and executed
through TMS-induced motor activation in another individual
[54]. However, this form of stimulation appears to have faded
from current research efforts, with no studies published after
2021 replicating or extending such paradigms. A recent
review confirms this trend, noting the absence of post-2021
experimental replications and highlighting a shift in focus
toward alternative B2BI architectures [55]. Other experiments
have used SSVEP-based encoding to coordinate cooperative
tasks, including collaborative paradigms such as multi-user
interfaces and brain-to-brain interaction systems [56]. While
still rudimentary, these approaches demonstrate the technical
feasibility of direct neural influence.
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Beyond the lab, B2BI is being explored in conceptual
frameworks for neurorehabilitation, such as the use of
synchronized tACS to enhance neural entrainment between
therapist and patient, potentially amplifying recovery through
interpersonal synchrony [57]. Though largely theoretical,
these ideas reflect a growing interest in inter-brain dynamics
as a therapeutic axis.

Yet as B2BI shifts from “reading” to “influencing” another
mind, it blurs foundational ethical boundaries: Where does my
intention end and yours begin? If a motor action is induced
by an external brain signal, who is responsible, the sender, the
receiver, or both? These dilemmas become sharper in multi-
agent systems and clinical or military contexts [58].

Additional concerns arise around neural privacy. Sharing
brain signals may inadvertently expose emotional states,
intentions, or diagnoses, raising the specter of neurohacking,
manipulation, or psychological overreach. As Elisabeth Hildt
notes, “B2BlIs are not only instruments of communication, but
also instruments of co-agency” [59]. This notion has recently
been echoed and expanded in the context of neurotechnology
ethics, where co-agency is reframed as relational agency
between users and devices, highlighting the shared nature of
autonomy and identity in technologically mediated cognition
[60].

To responsibly explore B2BlI, ethics must run in lockstep with
engineering. We need protocols for meaningful consent that
extend beyond procedural checklists. We must ensure that
receivers can distinguish internal thoughts from externally
induced states and that architectures remain transparent and
auditable. Above all, we must affirm the sanctity of cognitive
sovereignty, the right to control not only what we express,
but what we absorb [61]. This imperative becomes even
more urgent as research moves toward large-scale brain-
computer constellations, where identity, autonomy, and
accountability may be distributed across networks of minds.
Recent proposals for decentralized cognitive architectures,
such as ‘Mind plexes’ and ‘Cloud minds, raise profound
questions about how privacy, responsibility, and agency can
be preserved in collective systems [62]. We may soon be able
to transmit thoughts. The deeper question is: Are we ready to
share responsibility for them?

Conclusion: Vision Demands Responsibility

Electroencephalography (EEG) remains one of the
most widely used tools for diagnosing and monitoring
neurological disorders, including epilepsy, sleep disturbances,
encephalopathies, and altered states of consciousness. Its
ability to provide real-time insight into the brain’s electrical
activity makes it an essential instrument for clinical practice
and research. However, EEG is no longer confined to capturing
brain activity, it is evolving into a dynamic interface through

which we communicate, adapt, and act.

As EEG systems evolve into multimodal, adaptive, and cloud-
connected infrastructures, they move from instruments to
architectures. From digital EEG platforms and closed-loop
systems to BCls and experimental brain-to-brain interfaces,
the technological curve is steep and accelerating. Innovations
once unthinkable are now accessible, often freely, while others
remain secluded in experimental labs or restricted domains.

But as neurotechnologies extend their reach, the notion of
the individual itself begins to shift. In a future where brains
are networked with machines, and perhaps even with other
minds, where is the boundary of self? Do our thoughts remain
ours, or are they co-authored by systems we cannot fully
perceive? Are our actions truly autonomous, or subtly shaped
by predictive systems that anticipate and nudge behavior?
These are no longer questions for science fiction, but
emerging realities in military research, assistive technologies,
and consumer neurotech. As interfaces evolve from tools to
infrastructures, we risk dissolving the individual into a larger
system, technologically powerful, but ethically opaque. And
here a deeper uncertainty emerges: who controls the system?
Who sets the thresholds, tunes the models, governs the flow of
neural information across platforms and protocols? In a hybrid
brain-machine network, actions are no longer just a matter of
personal autonomy, they become a question of control.

Preserving human agency means more than enabling choice;
it means protecting the very space where choices are possible.

The future of EEG requires not only technical innovation
but also philosophical clarity. Because as we build systems
that listen to the brain and speak back, the ultimate question
becomes: what kind of selves are we designing for, and what
kind of world are we wiring them into?
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