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Invasive Properties of Glioma Cells are Critical to their 
Malignant Phenotype

High-grade gliomas are malignant brain tumors that are 
derived from glial progenitors, oligodendrocytes or astrocytes 
[1]. The prognosis of malignant glioma is poor with an 
overall survival of 12-15 months for glioblastoma (GBM) and 
2-5 years for anaplastic glioma. A hallmark of glioma is the 
diffuse infiltration of the neuropil, which regularly prevents 
complete surgical removal even in premalignant lesions [2]. 
While gliomas are generally considered to be non-metastatic, 
they are able to activate transcriptional programs known to 
promote mesenchymal cell functions that are associated 
with increased tumor cell invasion, a high rate of proliferation 
and poor patient survival [3]. Therefore, tumor cell invasion 
is a major aspect of glioma pathogenicity and defining the 
underlying adhesive mechanisms could lead the way to 
reversing the diffuse growth pattern of this malignancy.

The basic components of the brain extracellular matrix 
(ECM) are hyaluronan, chondroitin sulfate proteoglycans, 
and tenascin-R. Together, they form a 3-dimensional (3D) 
scaffold that promotes neurite outgrowth and prevents 
infiltration of both inflammatory and tumor cells [4]. Invasion 
into the interstitial spaces of the brain becomes possible after 
upregulation of CD44 in glioma cells, which takes place early 
during gliomagenesis and promotes glioma invasion into 
the neuropil through interaction with its ligand hyaluronan 
[5]. As gliomas progress, they begin to overexpress integrins 
and fibrillar ECM proteins such as fibronectin, collagen, and 
laminin. Binding of these ECM proteins to their complementary 

integrin receptors on glioma cells contributes to intracellular 
signals in support of glioma cell migration, growth, and 
survival [6–9]. These processes are clinically relevant because 
overexpression of ECM proteins and their integrin binding 
partners in glioma tissue correlates with decreased survival of 
patients afflicted with glioma [10,11]. Binding of integrins to 
their ligands in the ECM is instrumental for glioma infiltration 
alongside the basement membrane of the brain vasculature 
as well as neuronal, astrocyte, or white matter tracks [6,12]. 
In addition, cell adhesion plays an important role for glioma 
stem cells (GSC), which can be maintained through binding of 
glioma integrins α6 and α7 to laminin in perivascular niches of 
the brain [13,14]. Other functionally relevant integrins on GSCs 
include integrins αvβ3, αvβ5, αvβ8, and α2β1, suggesting 
that targeting adhesive interactions of glioma cells with their 
respective extracellular matrix could have a significant impact 
on controlling infiltration and growth of glial brain tumor cells 
[10,15–17].

Blood Clotting Represents a Relevant Modification of the 
Glioma Extracellular Matrix

The diffuse growth pattern of high-grade glioma is 
contingent on adhesive interactions of integrins with fibrous 
glycoproteins that are not present in the normal brain [18]. 
Therefore, glioma growth depends on the de-novo expression 
of polymeric glycoproteins such as tenascin-C, fibronectin, 
collagen, and laminin by tumor, stromal, and endothelial cells 
[7,12,19,20]. An alternative mode of brain tissue remodeling 
results from circulating adhesion proteins such as fibrinogen, 
plasma fibronectin, and vitronectin that extravasate together 
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with plasmatic coagulation factors and become incorporated 
into a provisional fibrin matrix [21–23]. This process is 
caused by a general procoagulant shift in glioma tissue that 
leads to thrombotic occlusion of tumor blood vessels and 
subsequent extravascular clotting in tissue voids generated 
by ischemic tumor cell necrosis [24,25]. The driving force 
behind the procoagulant shift in high grade gliomas is the 
overexpression of tissue factor, which is further enhanced 
by the hypoxic conditions in areas of tumor ischemia [24]. 
Hypoxia is also a strong inducer of VEGF, which leads to the 
formation of a hyperplastic and distorted vasculature that is 
unable to maintain a directed blood flow [26,27]. Accordingly, 
VEGF has been found to be upregulated in blood samples of 
glioma patients [28]. The resulting state of hypercoagulability 
is particularly prominent in patients with high-grade glioma 
and glioblastoma as their course of disease is frequently 
complicated by the occurrence of venous thromboembolism 
(VTE) [29]. VTE in glioblastoma patients often coincides 
with thrombotic occlusion of the tumor vasculature and the 
development of tumor cell necrosis [30,31]. This provides the 
functional basis for the large deposits of fibrin that can be 
found in tumor tissue of patients with glioblastoma and, to a 
lesser extent, in patients with astrocytoma grade 2 and 3 [32]. 
Normal brain, on the other hand, is essentially free of fibrin 
suggesting that the presence of fibrin in the tumor interstitial 
spaces is a specific modification of the extracellular matrix of 
malignant brain tumors.

Blood Clotting and Subsequent Fibrin Degradation 
Promote Glioma Growth

Overexpression of procoagulant factors in glioma is clinically 
relevant as there is a strong inverse relationship between the 
survival of glioma patients and the extent of necrosis and 
clotting in the corresponding tumor tissues [30,33]. Mutant 
IDH1, on the other hand, confers potent anti-thrombotic 
properties and, therefore, protects patients with IDH1-mutated 
gliomas from intratumoral thrombosis and subsequent tumor 
necrosis resulting in a significantly improved outcome [33]. 
Notably, mutant IDH1 not only inhibits tumor thrombosis 
locally but also lowers the incidence of paraneoplastic VTE 
systemically. This finding was confirmed in a prospective 
cohort study where the combination of IDH1 mutation status 
with the prothrombotic factor podoplanin could help to 
predict the VTE risk in glioma patients [34]. The implication 
of these studies is that it may be possible to identify glioma 
patients with a high risk of VTE and, conversely, reduce the risk 
of hemorrhagic stroke due to thromboprophylaxis in patients 
with a low VTE risk profile.

IDH1 has been shown to deactivate tissue factor expression, 
which is relevant as reactivating tissue factor with 
demethylating agents can reverse the tumor suppressive 
phenotype of IDH1 mutant gliomas [35]. Tissue factor/
coagulation factor VIIa complex initiates the clotting cascade 
through cleavage of coagulation factor X, which ultimately 
results in the formation of a fibrin matrix, and in addition, can 

modulate intracellular signals through binding to protease-
activated receptor 2 [36]. Blocking tissue factor with an 
inactive coagulation factor VII fragment significantly improved 
the efficacy of radiation therapy in glioblastoma patients 
while at the same time inhibiting the procoagulant activity 
that promotes interactions of glioma and inflammatory cells 
with the tumor microenvironment [37]. The procoagulant 
activity of glioma cells became also evident after mixing 
GBM cells with blood plasma, which resulted in a strong 
clotting reaction in vitro and accelerated xenograft growth 
after injection into the brain of immune-deficient mice in vivo 
[32]. The role of blood clotting for glioblastoma growth was 
confirmed by demonstrating delayed intracerebral tumor 
growth in coagulation factor VIII-deficient hemophilia A mice, 
which exhibit a severe bleeding phenotype due to the lack 
of an amplified clotting response downstream of the tissue 
factor/coagulation factor VIIa complex [38].

The effect of clotting on glioblastoma expansion is greatest 
in the early phase after tumor cell injection, suggesting 
similarities to circulating tumor cells where fibrin provides 
a transitional extracellular matrix until tumor cells are able 
to organize the microenvironment on their own [39]. The 
subsequent turnover of the clot matrix by fibrinolysis appears 
to be an important pro-tumorigenic feature in this context 
since brain tumor growth in vivo was strongly promoted after 
co-injecting glioblastoma cells with the soluble fraction of 
clotted plasma that is enriched with monomeric fibrin and 
fibrin degradation products [32]. These data are backed up by 
clinical studies that demonstrate significant upregulation of 
fibrinolysis parameters in glioma patients such as D-Dimers, 
plasminogen activator inhibitor and tissue-type plasminogen 
activator side by side with markers of thrombin activation 
[28,40]. On a functional level, the data indicate that blood clot 
and its fibrinolysis products represent a critical modification of 
the tumor microenvironment as they provide adhesive signals 
for glioma growth and infiltration.

Blood Clotting Promotes Glioma Growth through Glioma 
Cell Adhesion

The pro-invasive and pro-growth effects of blood clotting 
can be found in established cell lines as well as in primary 
tumor cells isolated from patients with glioblastoma, which 
readily infiltrate 3D matrices of plasma clot in vitro [32]. The 
basement membrane mixture matrigel, on the other hand, 
appeared less effective in mediating glioma growth and 
infiltration, suggesting that fibrin and its degradation products 
make specific contributions to glioma progression. Effective 
infiltration of GBM cells in clot correlates with overexpression 
of adhesion receptors of the β1 and β3 integrin family, that 
support invadopodia formation and GBM proliferation upon 
binding to specific sites in fibrin and other clot-associated 
glycoproteins such as fibronectin [32]. This in line with studies 
on melanoma, renal cell carcinoma and soft tissue sarcoma 
where integrin αvβ3 plays a key role in lung metastasis by 
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inducing epithelial mesenchymal transition through adhesive 
interactions with blood clot [39,41]. In addition, invadopodia 
formation in fibrin requires the fibrinolytic activity of 
plasmin, which in turn promotes growth in fibrin-embedded 
glioblastoma cells. Therefore, these results indicate that 
invasion and proliferation of glioblastoma cells are supported 
by overlapping adhesive functions and that activation of 
the adhesive functions depends on the presence of fibrin 
fragments.

The overlapping function of invasion and proliferation in clot-
embedded GBM cells can be mediated by both integrin β1 
and β3, both of which bind and activate focal adhesion kinase 
(FAK) at tyrosine 397 [32]. This, in turn, leads to recruitment 
of Src kinase and subsequent activation of critical intracellular 
signaling pathways such as PI-3K/Akt and p44/42 MAPK 
[42,43]. FAK has been shown to be upregulated in glioma 
compared to more benign brain tumors and overexpression 
of FAK in glioblastoma cells results in increased growth of 
orthotopic xenografts in immune deficient mice [44,45]. In 
the context of clotting, activation of FAK has been shown to 
be critical for fibrin(ogen)- mediated suppression of p53 and 
p21 in colorectal cancer [46]. Paralleling these data, knocking 
out FAK in U87MG, U373MG and U343MG glioblastoma cells 
with CRISPR Cas9 had strong anti-proliferative effects due to 
upregulation of the cyclin-dependent kinase inhibitors p21CIP1 

and p27Kip1, which resulted in a complete loss of tumorigenicity 
in immune-deficient mice irrespective of the p53 status [32]. 
Therefore, these data suggest that glioma cell adhesion to 
ligands prominently expressed in blood clot could be crucial 
for cell cycle progression.

The central role of the adhesive machinery in glioma 
progression was reiterated by mining data from the Cancer 
Genome Atlas and the Genotype-Tissue Expression projects, 
which showed stage-dependent upregulation of integrin β1 
and β3 in the most aggressive glioma subtypes and down-
regulation in less aggressive forms such as IDH1-mutated 
gliomas [32]. FAK expression did not correlate with glioma 
progression but the data suggest that FAK phosphorylation 
may be up-regulated in aggressive and suppressed in 
less aggressive glioma according to integrin expression. 
High β1 and β3 integrin expression in glioma correlate 
with upregulation of pathways involved in epithelial to 
mesenchymal transition, inflammation, and coagulation, 
thereby highlighting the functional connection between 
glioma invasion, microenvironment, and extracellular matrix 
architecture [32]. This connection is apparent in gliomas of all 
grades but becomes particularly relevant in low grade gliomas 
where upregulation of integrin β1 and β3 is associated with 
significantly reduced patient survival.

Conclusion and Future Directions

The topic of this commentary was the specific contribution 
of blood clotting to glioma infiltration as described in a recent 

original research paper by Knowles et al. [32]. Taken together, 
the authors demonstrate that the prothrombotic state of 
gliomas is associated with the formation and subsequent 
degradation of fibrin in tumor interstitial spaces. Glioma cell 
sprouting involves binding of glioma integrins β1 and β3 to 
clotted plasma and subsequent activation of FAK. Paralleling 
these data, Knowles et al. demonstrate that integrins β1 and 
β3 are upregulated in patients with aggressive gliomas and 
that FAK expression is a prerequisite for gliomagenesis in 
representative murine xenografts [32]. Therefore, the results 
indicate that adhesive interactions of glioma cells with clot 
deposits in the tumor extracellular matrix make important 
contributions to glioma progression.

Anticoagulant therapy in glioma patients is not uncommon 
due to the high incidence of venous thromboembolism in 
this patient group and blocking the clot initiating activity of 
tissue factor with a coagulation factor VII decoy appears to be 
beneficial in the context of radiation therapy [37]. Treatment 
of glioma patients with low-molecular heparin due to VTE, 
on the other hand, does not seem to improve overall survival 
in a retrospective analysis, but these data are compounded 
by low overall survival of glioma patients with intracerebral 
hemorrhage as a complication of anticoagulant therapy [47]. 
Ultimately, the benefit of anticoagulant therapy in glioma 
patients with a high risk of developing VTE needs to be 
prospectively tested in a randomized clinical trial while the 
role of fibrinolysis for glioma progression should be further 
explored in preclinical models and early clinical studies.

The standard treatment of glioblastoma consists of 
maximum safe resection, radiation therapy and maintenance 
chemotherapy with temozolomide [48]. Additional targeting 
of αv integrins in glioma tissue and tumor vasculature 
with the peptidomimetic cilengitide did not improve the 
survival of glioblastoma patients compared to standard 
treatment [49]. The reasons that cilengitide did not reach its 
potential are manyfold, including contradictory functions 
of αv integrins, intrinsic integrin activation upon binding of 
the peptidomimetic and also redundancy of the adhesive 
mechanisms targeted [50,51]. Recognizing that glioma cell 
adhesion to clotted plasma could be equally mediated by 
β1 and β3 integrins Knowles et al. moved downstream and 
targeted FAK, which proved to be critical for tumor growth 
in standard glioblastoma cell lines and xenografts [32]. A 
series of FAK inhibitors are being tested in clinical trials for the 
treatment of highly aggressive neoplasms such as pancreatic, 
lung and ovarian cancer [52]. Considering the wealth of 
information that can be derived from pathway analysis in 
glioma tissues, it would appear attractive to further explore 
the utility of FAK as a treatment target in glioma patients using 
a bioinformatics approach [53].
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