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Editorial

Neural stem cells (NSCs) are the foundation of brain 
development, giving rise to the vast diversity of neurons 
and glial cells that form the central nervous system. In the 
embryonic cerebral cortex, radial glia arise from primitive 
neuroepithelium and act as the main source of NSCs and 
progenitors of other glial cells that balance self-renewal with 
differentiation in a spatially and temporally regulated manner 
[1,2]. Neural stem and progenitor cells can also be found in the 
neural crest during development, the subgranular zone (SGZ) 
of the dentate gyrus in the hippocampus, and subventricular 
zone (SVZ) of the lateral ventricles in the adult brain [3,4]. The 
precise orchestration of NSC lineage progression underlies the 
layered architecture of the cerebral cortex and the functional 
connectivity of the adult brain [5,6]. Dysregulation in NSC 
behavior can result in developmental abnormalities, impaired 
cognition, or predisposition to disease [7]. 

While transcriptional and epigenetic regulations at the 
chromatin level have been extensively studied during neural 
development, emerging evidence highlights a renewed 
interest in bioelectricity, one of the most basic and intrinsic 
properties of cells, as a key layer of control influencing 
NSC proliferation and differentiation [8,9]. Bioelectricity is 
fundamental to all cell types and established through the 
differential distribution of ions and charged particles across 
the plasma membrane by the modulation of expression 
and activity of ion channels, transporters, gap junctions, 
and pumps [9]. Nearly all animal cells maintain a conserved 

ionic asymmetry, where intracellular potassium ion (K+) 
concentration is higher and sodium ion (Na+) level is lower 
compared to the extracellular environment. This gradient 
is upheld by the Na+/K+-ATPase ion pump and underlies 
critical functions such as cellular volume regulation [10]. The 
resting membrane potential reflects a balanced state of ions, 
chemicals, and charged molecules between the extracellular 
and intracellular spaces and contributes to each cell type’s 
unique physiology [9].

Gap junctions (GJs) are formed by direct docking of two 
GJ hemichannels, with 6 connexin or pannexin isoforms 
on each apposing side, between adjacent cells or cell-cell 
contact sites [11]. GJs are multifaceted mediators on the 
plasma membrane capable of coordinating rapid electric 
and chemical coupling of a large group of cells through GJ 
formation. They can also perform GJ-independent functions 
as hemichannels, adhesion molecules, and modulators of 
intracellular signaling pathways [12]. Studies have found that 
GJ subunits are widely expressed in the developing brain and 
participate in neurogenesis, migration of postmitotic cells, 
and chemical synapse formation [13]. Connexin 43 (Cx43) has 
been shown to regulate the fate of human neural progenitor 
cells (hNPCs) [14]. Silencing of Cx43 shifts their differentiation 
balance, promoting a neuronal phenotype while reducing 
a glial phenotype, through GJ-independent and β-catenin-
mediated transcription of pro-neuronal genes. Notably, 
studies in an E16-17 rat model reveal that Cx43 hemichannels 
serve as key initiators of radial glial calcium waves, and that 
disruption of this activity compromises neurogenesis in the 
ventricular zone [15]. Similar findings have been observed 
in mouse embryonic stem cell–derived neural progenitors, 
where connexin 43-mediated electrical coupling drives the 
activation of voltage-gated Ca2+ channels, which in turn leads 
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to the generation of Ca2+ oscillations, ultimately enhancing 
progenitor proliferation and contributing to cortical layer 
development [16]. It was also reported that GJ communication 
mediated by Cx43 and Cx45 in rat fetal (E10.5) NSCs is essential 
for their survival and proliferation [17]. Taken together, these 
studies underscore critical roles of GJs in shaping cortical 
development [18].

Various ion channels have also been reported during 
the proliferation and/or differentiation of neural stem and 
progenitor cells. Emerging evidence indicates that hNPCs 
derived from fetal midbrain progressively acquire functional 
voltage-gated sodium and calcium channels as they mature 
into neurons in vitro, which are essential for the generation of 
action potentials, while proliferating hNPCs engage transient 
receptor potential (TRP) channel-mediated calcium entry 
during neurogenesis [19,20]. Notably, store-operated calcium 
ion influx mediated by calcium release-activated channel 
(CRAC) also plays important roles in embryonic and adult NPC 
proliferation in vitro and in vivo [21]. In glial progenitor cells, 
blockage of K+ channel activity resulted in accumulation of 
cyclin-dependent kinase inhibitors, p27(Kip1) and p21(CIP1), 
and cell cycle arrest at the G1 phase, linking electrical states 
to cell cycle progression [22]. In the postnatal and adult 
mouse hippocampal dentate gyrus, the Na+-K+-2Cl- (NKCC1) 
cotransporter is a central regulator of chloride homeostasis 
that preserves neural stem cell quiescence, thereby ensuring 
life-long neurogenesis [23]. Moreover, Piezos are mechanically 
activated and nonselective cation channels localized on the 
plasma membrane [24]. They convert mechanical forces such 
as stretch, stiffness, and shear into lineage cues via integrin, 
ERK1/2 MAPK, Notch, and WNT pathways, linking extracellular 
mechanics to stem cell fate [25]. In E10.5 mouse embryos, 
Piezo1 regulates neural stem cell proliferation, differentiation, 
and cholesterol metabolism [26], while in traumatic brain 
injury models, its inhibition directs the differentiation of 
hippocampal NSCs toward neurons [27]. Extending this 
biology into biomaterials, human neural stem and progenitors 
cultured on piezoelectric scaffolds differentiated into β-III 
tubulin-positive neuronal cells even without inductive factors 
[28]. Together, these findings highlight Piezo1 as a hub of 
mechano-bioelectric regulation and underscore piezoelectric 
materials as powerful tools for neural tissue engineering.

Lastly, electrical stimulation has been shown to drive 
embryonic stem cells toward neuronal lineages through 
calcium-dependent mechanisms and to increase fetal NSC 
proliferation and differentiation [29,30]. These findings suggest 
that incorporating electrical modulation into pluripotent 
stem cell-based brain organoids could provide an exciting 
opportunity to enhance their developmental precision and 
functional relevance. Key challenges include capturing the 
dynamics of membrane potentials at single-cell resolution 
and clarifying how bioelectric signals interface with cell-cell/

cell-extracellular matrix interactions, intracellular signaling, 
transcriptional regulation, and chromatin regulators. 
Innovative tools such as optogenetics, piezoelectric 
biomaterials, and nanotechnology-based voltage modulators 
hold promise for experimental dissection and therapeutic 
translation. Collectively, these advances position bioelectricity 
as a frontier in developmental neurobiology with the potential 
to redefine models of brain development and open new 
avenues for regenerative medicine.
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