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Introduction

The immune system has multiple pathways of action, and 
these pathways are divided into two major blocks: innate 
immunity, which is intrinsic to animals, and adaptive immunity. 
Innate immunity represents the first line of defense against 
pathogens in animals and it is characterized by its nonspecific 
nature. This form of immunity is the oldest form in evolution 
and is present in all multicellular organisms, including 
vertebrates and invertebrates [1]. Unlike adaptive immunity, 
which depends on specific recognition of pathogens and 
involves a memory component, innate immunity acts 
immediately after infection and does not require prior 
exposure to a pathogen, being a more immediate response 
pathway than adaptive immunity [2].

Innate immune system employs a variety of mechanisms 
to identify and respond to pathogens. At the heart of this 
process are pattern recognition receptors (PRRs), which 
recognize conserved molecular patterns associated with 
pathogens, known as pathogen-associated molecular 
patterns (PAMPs) [3]. These receptors include Toll-like 
receptors (TLRs), which play a critical role in initiating 
immune responses by detecting microbial components and 
activating signaling pathways that lead to the production of 
inflammatory cytokines and antimicrobial peptides (AMPs) 
[4]. Innate immune responses can be modulated by several 
factors, including environmental cues and the presence of 
other immune cells, which can either enhance or suppress 
the overall immune response [5].
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With studies being conducted modulating the action of 
innate immunity, the concept of “learned immunity” has been 
highlighted, focusing mainly on clades of animals that only 
have innate immunity as a form of immune response. Learned 
immunity occurs when innate immune cells exhibit enhanced 
responses after re-exposure to pathogens, suggesting a form 
of immunological memory that was previously considered 
exclusive to adaptive immunity [6]. Studies such as these are 
able to highlight the need to better understand how innate 
immunity works in the body and in animal cells. For this reason, 
the present work aims to highlight the importance of innate 
immunity through a review of what is known about innate 
immunity as a form of response within the evolution of taxa, 
addressing the theme from more basal animals to mammals.

The Foundation of Immunity: Basal Animals as Evolutionary 
Evidence

Innate immunity in basal animals, such as poriferans 
(sponges) and cnidarians (i.e. sea anemones and corals), 
represents a fundamental aspect of their biological defense 
mechanisms against pathogens. This first form of defense is 
characterized by its reliance on germline-encoded receptors 
and immediate responses to microbial threats, distinguishing 
it from the adaptive immune responses seen in more complex 
organisms.

In poriferans, innate immunity is primarily mediated by PRRs, 
which recognize PAMPs. Previous studies have shown that 
sponges express TLRs, which play a crucial role in initiating 
immune responses by triggering signaling pathways that 
lead to the production of AMPs and inflammatory cytokines 
[7,8]. The sponge Amphimedon queenslandica [9] has been 
highlighted for its complex repertoire of nucleotide-binding 
oligomerization domain receptors (NLRs), which are integral 
to the innate immune response and can initiate pyroptosis 
and apoptosis in response to infections [10]. This indicates 
that, even at this early stage of metazoan evolution, sponges 
possess sophisticated mechanisms for detecting and 
responding to pathogens. 

Furthermore, sponges already utilize several immune 
signaling pathways, including MyD88-dependent pathways, 
which are essential for their defense against bacterial infections 
[8], and these receptors can be induced upon exposure to 
microbe-associated molecular patterns, demonstrating their 
ability to recognize and respond to environmental microbial 
threats [11]. With evolution, it is possible to see some gains but 
also similarities between animals, with the innate immunity of 
Cnidaria being similarly characterized by the presence of TLRs 
and other immune receptors that facilitate the detection of 
pathogens. The TLR in sea anemones is involved not only in the 
detection of pathogens, but also in developmental processes, 
indicating a dual role in both immunity and growth [12].

Innate immune responses in cnidarians are also marked 

by the activation of signaling pathways that lead to the 
expression of immune-related genes, which help in the 
fight against infections [13]. The evolutionary conservation 
of innate immune genes among these basal taxa highlights 
the fundamental nature of these immune mechanisms in 
early-diverging metazoans [14]. For cnidarians, there is also 
an important relationship that highlights the effectiveness 
of their innate immunity, indicating that cnidarians have a 
diverse repertoire of PRRs, which allows them to recognize 
both microbial threats and their symbiotic partners, such 
as photosynthetic microalgae that play an important role 
in obtaining energy for corals (i.e. zooxanthellae) [3]. This 
immunological specificity is particularly important to 
maintain the balance between tolerance and defense, as the 
host must distinguish between beneficial symbionts and 
harmful pathogens [15]. Innate immune responses in corals 
can be modulated to support the symbiotic relationship with 
zooxanthellae, while providing defense against potential 
pathogens [16]. 

In taxa lacking an adaptive immune system, the presence of 
innate immunity in basal metazoans (such as cnidarians and 
poriferans) provides essential defense mechanisms that enable 
these organisms to survive despite environmental stressors. 
In corals, innate immunity plays a pivotal role in maintaining 
health by regulating the balance between beneficial and 
harmful microbial communities. Environmental changes, 
including rising temperatures and salinity fluctuations driven 
by climate change, can disrupt this balance, leading to a shift 
from symbiotic to pathogenic microbiota. This dysbiosis can 
compromise the health and resilience of Cnidaria. However, 
the innate immune system contributes to the taxon’s ability to 
manage such microbial shifts, offering a degree of protection 
against disease and environmental perturbations [17].

The Role of Modern Invertebrates

Similar to poriferans and cnidarians, molluscs have a robust 
innate immune system, with specialized hemocytes that play 
a crucial role in defense against pathogens in both freshwater 
and marine environments. Hemocytes are the main immune 
cells in molluscs, analogous to mammalian phagocytes 
such as neutrophils and macrophages. They are involved in 
several immunological functions, including phagocytosis, 
encapsulation, and release of antimicrobial substances 
[18,19]. These cells circulate in the hemolymph of molluscs of 
all classes and are recruited to sites of infection, where they 
can recognize and eliminate pathogens through phagocytosis 
[20,21]. The ability of hemocytes to produce reactive oxygen 
species (ROS) and other cytotoxic molecules is critical for the 
destruction of engulfed pathogens [19].

Snails do not have an adaptive immune system, meaning 
that their immune responses are not specific or anticipatory. 
Instead, they rely on a diverse array of innate immune 
mechanisms that include the recognition of PAMPs via PRRs 
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[22]. Peptidoglycan recognition proteins (PGRPs), for example, 
are important components of the molluscan immune 
response, facilitating the detection of bacterial infections and 
triggering downstream immune signaling pathways [23].

The arthropod immune system, particularly in the model 
organism Drosophila melanogaster, is characterized by a 
highly efficient innate immune response that plays a crucial 
role in defense against pathogens, a trait that can be traced 
back to molluscs. This immune response is mediated primarily 
by two major signaling pathways: the Toll pathway and 
the immunodeficiency (Imd) pathway. Both pathways are 
activated by PRRs that detect PAMPs, leading to the production 
of AMPs and other immune effectors [24,25]. Upon recognition 
of PAMPs, such as peptidoglycan from bacterial cell walls or 
β-glucans from fungal cell walls, the Toll receptor activates a 
signaling cascade that ultimately leads to the activation of the 
transcription factor NF-κB (Nuclear factor kappa-light-chain-
enhancer of activated B cells), which promotes the expression 
of several AMPs [26,27].

Recent studies have highlighted the role of specific Toll 
receptors, such as Toll-7, in the recognition of viral infections 
and in the activation of autophagy as a defense mechanism 
[26]. This indicates that the Toll pathway is not only involved in 
the response to fungal pathogens, but also plays a significant 
role in antiviral immunity, showing the versatility of this 
immune signaling pathway. The innate immune mechanisms 
observed in Drosophila are remarkably conserved among 
arthropods, indicating a common evolutionary origin. 
Comparative genomics has revealed that many immune genes 
are shared among different arthropod species, highlighting 
the importance of innate immunity in this diverse group [28]. 
The evolutionary conservation of the Toll and Imd pathways 
highlights their fundamental roles in host defense against 
infections.

Finally, among invertebrates, and their last link before 
they have adaptive immunity, are the Echinoderms. Like 
arthropods, echinoderms use a variety of cellular and humoral 
mechanisms to defend themselves against pathogens. 
Coelomocytes are specialized immune cells that play a 
crucial role in the innate immune response of echinoderms. 
They are produced in the axial organ and circulate within the 
coelomic fluid, where they can respond rapidly to infections 
or injuries [29,30]. There are several types of coelomocytes, 
including phagocytes, spherulocytes, and amoebocytes, 
each with distinct functions in immune defense [31,32]. 
Phagocytes are particularly important as they are responsible 
for the process of phagocytosis, where they engulf and 
digest pathogens such as bacteria and viruses [32,33]. The 
ability of coelomocytes to recognize and eliminate foreign 
materials is critical for maintaining the health of echinoderms 
in their marine environments, as the coelomocytes of the sea 
cucumber Apostichopus japonicus can effectively phagocytose 
Vibrio splendidus, a common marine pathogen [32].

AMPs are an essential component of the echinoderm immune 
system. These peptides are produced by coelomocytes and 
play a crucial role in the direct targeting and neutralization 
of pathogens [31,34]. The diversity of AMPs in echinoderms 
is remarkable, with some species exhibiting a wide range 
of antimicrobial activities against various pathogens [34]. 
Furthermore, echinoderms possess a complement-like system 
that enhances their immune responses. For example, the 
purple sea urchin Strongylocentrotus purpuratus has been 
shown to express a complement homologue, SpC3, in its 
coelomocytes, which is involved in pathogen recognition and 
elimination [35].

The immune system in invertebrates (Figure 1) carries 
functions and pathways that can also be seen in vertebrates, 
and is the precursor to many of the adaptive immunity 

Figure 1. Evolutionary progression of innate immune components and response strategies in invertebrates. From basal Porifera to the more 
derived Echinodermata.
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pathways that vertebrates have evolved to adopt. What can 
be concluded in relation to these animals is that, although 
invertebrates do not have adaptive immunity, there are 
different and common cellular means and functions among 
all of them that can explain part of how adaptive immunity 
works and intensified in vertebrate animals.

Molecular Genetics Implication of Immune System in 
Invertebrates in Relationship to Humans

Although humans are the most recent evolutionary phylum, 
there is abundant evidence of a genetic inheritance shared 
between invertebrates and humans. Similarities are essential 
for the use of model organisms that aid in the understanding 
of immunological processes, identifying key components that 
can be used as a biotechnological tool. 

Thinking about homology is an extremely interesting 
intellectual exercise when one aims at sharing evolutionary 
inheritance. Examples in this sense can be found for signaling 
systems that make up the innate immune response, such as 
members of the Janus kinase (JAK) (hopscotch in Drosophila 
melanogaster), signal transducer and activator of transcription 
(STAT) (Stat92E/marelle in Drosophila), c-Jun N-terminal kinase 
(JNK) (basket in Drosophila melanogaster) and p38 (p38b in 
Drosophila melanogaster) signaling protein family [36–39]. 
Porifera have shown intrinsic similarities with the JNK proteins 
of humans. According to the work of Müller and collaborators 
[40], there is an important process of selective pressure in 
the presence of introns in genes related to the JNK gene, and 
an expansion can be observed in humans. In cnidarians, it is 
also possible to find homologies related to signaling proteins 
associated with the aforementioned molecular pathways, 
such as Wnt, Transforming growth factor beta (TGF-β), and 
Fibroblast growth factor (FGF) [41].

One of the most intriguing homologies concerns the 
components of the TLR molecular pathway. The association of 
the human proteins NF-κB, inhibitor of nuclear factor kappa B 
(IκB), brain-derived neurotrophic factor (BDNF), interleukin-1 
receptor-associated kinase 1 (IRAK-1), IκB kinase (IKK) with the 
proteins dorsal, cactus, spätzle, pelle and kenny in Drosophila 
melanogaster has already been described [37,42–47]. Other 
invertebrates such as poriferans [48], ctenophores [49,50] and 
echinodermatans [51] show similarities with NK-κB and IκB 
signaling, as well as IRAK1 [52,53].

In this paper, we can observe that it is possible to establish 
parallels of important molecular pathways between 
invertebrates and vertebrates, revealing a broad field of 
scientific application. Thus, the present work has shown that 
it is possible and, in addition, it can serve as an important 
starting point as a biotechnological tool. Thus, we believe that 
the use of these parallels is essential for a better understanding 
and conservation of living organisms.
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