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Introduction

Intra-amniotic infection due to microbial invasion of the 
amniotic cavity has been implicated in various pregnancy 

complications; spontaneous preterm labor, preterm premature 
rupture of membranes, chorioamnionitis and adverse maternal 
and neonatal outcomes [1-4]. Infection may result from 
multiple routes of invasion including ascending infection from 
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the lower genital tract, hematogenous dissemination through 
the placenta, retrograde seeding through the fallopian 
tube and iatrogenic infection [1,5]. Bacterial colonization 
of the placenta has been reported in association with 
adverse pregnancy outcomes including preterm birth and 
chorioamnionitis [4,6]. A study demonstrated the presence 
of bacteria in the basal plate of the placenta, at the maternal-
fetal interface, in association with early preterm birth and in 
the absence of chorioamnionitis [7]. 

The ‘sterile womb paradigm’ is currently under debate and 
the advent of next generation 16S rRNA gene sequencing 
is driving the characterization of microbes associated with 
the amniotic cavity during pregnancy [8-10]. In 2014, the 
sterile womb hypothesis was challenged by Aagaard et al. 
who reported the detection of bacterial DNA in placental 
samples [11]. However, a complication for these studies is 
the presence of low levels of microbial DNA in laboratory 
dust and commercial reagents which may produce signals 
from the highly sensitive molecular methods used. A further 
complication is that it is possible to generate germ-free 
neonates by sterile caesarean delivery which makes the sterile 
womb hypothesis appealing as pathogens can cross the 
placenta [12]. This contemporary area of research has led to 
the recent proliferation of microbiome studies of the amniotic 
cavity to increase understanding on this topic. 

Major findings of this research include detection and 
identification of bacterial species from predominantly 
amniotic fluid and placenta samples and association of the 
microbiome with specific outcomes or pathology in study 
cohorts [6,11,13-15]. However, some placenta-based studies 
failed to detect microbial DNA [16-18]. This may be due to 
the low biomass of microbes reported in placental tissue as 
well as the difficulty in isolating genomic DNA from tissue 
rather than amniotic fluid [11]. Recent studies oppose the 
idea that there is a microbiome associated with the placenta, 
citing contamination or background signals [16,17,19,20]. In 
contrast, some studies offer insight into a uterine microbiome 
which is often described as unique and associated with 
specific factors such as birth weight, chorioamnionitis and 
pathology [5,6,11,14]. Cohort selection criteria also plays an 
important role in microbiome studies such as Kuperman et 
al. (2019) where placentas were delivered from women with 
preeclampsia, which is not typically associated with microbial 
infection, and the lack of detection of microbial DNA is 
expected [16]. 

However, the different regions of the placenta must also be 
considered when comparing subsets of placental microbiome 
studies. Variations have been described in microbial 
composition between the fetal amniotic membranes, the 
placental villi, and the basal plate, and these three regions 
of the placenta differ by fetal or maternal origin, structure, 
function, and barrier capacities as well as timing of infection 
[6,15,21]. In this current study, the placental samples submitted 

for next generation 16S rRNA gene sequencing comprised 
the placental parenchyma, including the chorionic plate, the 
intervillous space, and basal plate.

The clinical relevance of using DNA-based molecular 
detection of microbes has been questioned as it is known that 
DNA is able to persist for weeks following antibiotic usage and 
cell death and perhaps longer in a stable environment such as 
the uterine cavity [22,23]. The inability to differentiate between 
viable and non-viable cells is a major limitation in microbiome 
studies which characterize dynamic systems [31]. However, 
additional investigations such as quantification of microbes 
using qPCR or correlation of the presence of microbial DNA 
with clinical indications of infection or inflammation may 
provide a more detailed understanding of the specific 
microbiome being studied. 

Other studies have employed a similar approach to this 
current study by using NGS of the 16S rRNA [11,14,17,19]. 
Zheng et al. detected microorganisms in the placenta in 
association with neonatal low (LBW) or normal (NBW) 
birth weight [14]. The relative abundance of Lactobacillus, 
Clostridium, Cyanobacteria, Ruminococcus and Lawsonia were 
significantly lower in LBW group and conversely Megasphaera, 
Faecalibacterium, Jeotgalicoccus, Pediococcus, Sneathia, and 
Sphingobacterium were significantly higher in LBW group, 
compared with the NBW group. Prince et al. found a higher 
abundance of Ureaplasma parvum, Streptococcus agalactiae 
and Fusobacterium nucleatum from fetal chorion and/or 
villous placental membranes in association with preterm birth 
with severe chorioamnionitis [6]. 

Despite recent advances in metagenomics, and perhaps 
because of the opposing results of microbiome studies, it 
is apparent that the microbial census of the amniotic cavity 
remains incomplete. Gaining understanding of the microbial 
diversity associated with pregnancy may propel research 
regarding the source of infection, pathogenicity, synergism of 
pathogens and adverse clinical outcomes. Microbiome data 
combined with clinical outcomes may significantly enhance 
the knowledge of the role of placental colonization and the 
effect on adverse pregnancy outcomes. The objective of this 
study was to characterize the microbial diversity in placentas 
from complicated pregnancies using next generation 
sequencing of the 16S rRNA gene in association with adverse 
pregnancy outcomes and histopathology studies. 

Materials and Methods

Ethical clearance, study population and design

This prospective hospital-based study included patients 
delivering in the labor ward at a tertiary referral hospital in 
the Eastern Cape, South Africa from March 2016 to November 
2017. This hospital services a large area and only patients who 
present with complicated deliveries are eligible for admission 
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to the maternity unit. Ethics approval was granted from 
the Nelson Mandela University Research Ethics Committee 
(Human) (reference: H15-SCI-BCM-001). Permission to 
conduct the study was obtained from the Eastern Cape 
Department of Health (EC_2015RP8_78) and from the acting 
Clinical Governance Manager at the hospital respectively. 
Patients were recruited and informed consent was obtained 
including permission for the collection of their placenta after 
delivery and for their medical records to be accessed for 
maternal and neonatal chart review. Patients received unique 
and anonymous study numbers for entry into a de-identified 
database. Placentas from preterm deliveries (n=42; 28 to 34 
weeks gestational age) were collected as the test cohort, while 
placentas from term deliveries (n=20; >37 weeks gestational 
age) were collected as the control cohort. Placentas were 
collected consecutively according to confirmation of 
inclusion criteria of gestational age and if the mother was 
able and willing to give informed consent after delivery. The 
gestational age range was selected as, according to the World 
Health Organization, viability of preterm neonates reaches 
a 50% chance of survival at 34 weeks gestational age in low 
to middle income countries, compared to 24 weeks in high 
income countries [25].

Placentas

Following delivery, the placenta was immediately transferred 
to a sterile container and processed within 1 hour. The placenta 
was placed maternal side down on a sterile work table in 
a biosafety cabinet. The fetal surface was decontaminated 
using 70% ethanol to minimize contamination by maternal 
skin and vaginal flora depending on mode of delivery. Using 
sterile surgical implements, an incision was made in the 

amnion, at a point approximately halfway between cord 
insertion and placental edge, where a single full-thickness 
biopsy (approximately 1 cm3) was removed from below the 
chorioamnion including the chorionic villi, syncytiotrophoblast 
and decidua and was stored in RNAlater (Life Technologies, 
Canada) in a cryogenic vial at -80°C. The remainder of each of 
the placentas underwent routine macroscopic examination, 
followed by fixation in 10% buffered formalin and histology 
at National Health Laboratory Services (NHLS), Gqeberha, 
Eastern Cape. All cases were evaluated histologically by a 
single pathologist using a standardized placental macroscopic 
evaluation protocol and histology template approved and 
validated by the NHLS laboratory. Prof CA Wright, anatomical 
pathologist, a specialist in placental histology, reviewed all the 
placenta specimens for this study and histopathology data 
was published in 2023 [27]. The pathologist was blinded to all 
information except gestational age and whether live-born or 
stillbirth. Based on the macroscopic and microscopic data, a 
histological diagnosis was made according to the Amsterdam 
Consensus Classification System [26,27]. 

Maternal and neonatal chart review 

A maternal chart review was performed to gather 
demographic and obstetric characteristics such as maternal 
race, age, parity, smoking status, diabetes, preeclampsia, 
Human Immunodeficiency Virus (HIV) status and the mode 
of delivery (Caesarean section [CS] or normal vertex delivery 
[NVD]) (Table 1). Certain fetal/neonatal characteristics that 
were available shortly after delivery were recorded in the 
maternal chart before a neonatal chart was opened (Table 
2). Demographic information was required to investigate 
patterns around different disease conditions in the study 

Table 1. The distribution of placental lesions from preterm and term births.

Placental pathology* Preterm, n (%) (n=42) Term, n (%) (n=20)

ACAM 8 (19) 11 (55)

MVM 20 (48) 8 (40)

AP 18 (43) 7 (35)

FVM 4 (10) 0 (0)

VUE 4 (10) 0 (0)

ACAM with FIR 4 10) 0 (0)

Chorangiosis, chorangioma 1 (2) 0 (0)

Intravillous haemorrhage 2 (5) 0 (0)

TTS 1 (2) 0 (0)

RPH 2 (5) 0 (0)

Other 7 (17) 3 (14)

ACAM: Acute Chorioamnionitis; MVM: Maternal Vascular Malperfusion; AP: Abruptio Placenta; FVM: Fetal Vascular Malperfusion; VUE: Villitis 
of Unknown Etiology; FIR: Fetal Inflammatory Response; RPH: Retroplacental Hemorrhage; TTS: Twin Transfusion Syndrome.

*Placentas may have more than one lesion.
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population group [28]. A neonatal chart review was performed 
for each neonate from preterm and term delivery. General 
characteristics such as live birth/ still birth, neonatal gender, 
weight, and APGAR score were recorded at birth. Neonatal 
charts were later reviewed for outcomes, i.e., respiratory 
distress syndrome, sepsis, pneumonia, neonatal jaundice, and 
necrotizing enterocolitis. Data on histopathology is available 
(Tables 1 and 2). 

DNA extraction and library preparation

The 16S rRNA gene is made up of nine hypervariable regions 
(designated V1-V9) [29]. The choice of which hypervariable 
region to target for microbiota studies is complex as the 
phylogenetic resolution and abundance estimate achieved 
with each region will differ for the different taxa within 
the community. While the V3-V4 regions have been used 
to examine cervical and vaginal communities, there is no 
agreement on the optimal region for cervical and vaginal 
microbiota studies [30]. The V3-V4 region of the 16S rRNA 
gene was targeted to characterize the bacterial community 
within preterm and term placenta samples. Next generation 

sequencing was performed by KRISP (Kwazulu-Natal Research 
Innovation and Sequencing Platform) Laboratories, Nelson R 
Mandela School of Medicine at the University of KwaZulu-Natal 
(http://www.krisp.org.za). Tissue samples from 42 preterm and 
20 term placentas (50 mg) were excised from the original tissue 
biopsy of the chorionic villi, syncytiotrophoblast and decidua 
within a biological safety cabinet. Tissues were lysed using the 
Qiagen Tissue Lyser at 30 pulses for 45 seconds. Total nucleic 
acid was extracted using the PerkinElmer Chemagic 360 
Automated system and DNA was quantified using the Qubit 
3.0 instrument using the Qubit dsDNA Assay Kit (Thermo 
Fisher Scientific, South Africa) and normalized to 5 ng/μl in 
10 mM Tris, pH 8.5. Negative kit controls were included for 
extraction, library preparation, and amplification.

The V3 and V4 regions of the bacterial 16S rRNA gene were 
amplified by PCR using Platinum Taq DNA Polymerase Kit 
(Invitrogen, California, USA) with Forward primer: 5’-TCG TCG 
GCA GCG TCA GAT GTG TAT AAG AGA CAG CCT ACG GGN GGC 
WGC AG-3’ and Reverse primer 5’-GTC TCG TGG GCT CGG AGA 
TGT GTA TAA GAG ACA GGA CTA CHV GGG TAT CTA ATCC-3’ 
which result in a single amplicon of approximately ~460 bp 

Table 2. Maternal and obstetric characteristics of the preterm study and term control groups.

Preterm (n=42) Term (n=20)

Numerical Mean (SD) Mean (SD)

Maternal age, years 28.88 (6.46) 27.35 (4.84)

Parity 2.05 (1.11) 0.90 (0.91)

Categorical Total, n (%) Total, n (%)

Ethnicity

African 29 (69) 14 (70)

 Mixed 13 (31) 6 (30)

Birth Mode

NVD 19 (45) 10 (50)

CS 23 (55) 10 (50)

Substance abuse

Smoking 9 (21) 15 (75)

Alcohol 6 (14) 10 (50)

HIV 18 (43) 4 (20)

Diabetes 1 (2) 3 (15)

Pre-eclampsia 14 (33) 1 (5)

AEDF 2 (5) 1 (5)

HELLP 4 (10) 0 (0)

PROM 9 (21) 2 (10)

SD: Standard Deviation; NVD: Normal Vertex Delivery; CS: Caesarean Section; AEDF: Absent End Diastolic Flow; HELLP: Haemolysis Elevated 
Liver Enzymes and Low Platelets Syndrome; PROM: Premature Rupture of Membranes.

http://www.krisp.org.za
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(Illumina 16S Metagenomic Sequencing Library Preparation 
Guide, California, USA) [31]. Sequencing included negative 
controls. PCR assays were performed in 12.5 μL reactions 
containing 5 μL of extracted DNA, 0.1 μL of DNA Polymerase, 
1.2 μL buffer, 0.5 μL MgCl2, 0.3 μL dNTP, 2 μL of each primer 
(1 μM) and sterile DNase/RNase-free dH2O. The Nextera XT 
Index primers (Illumina, California, USA) were used to provide 
a unique barcode to each sample. Agencourt AMPure XP 
beads (Beckman Coulter, California, USA) were used to remove 
unbound adapters. DNA was quantified using the Qubit 3.0 
instrument and Qubit dsDNA Assay Kit. A fragment size of 
550 bp was verified on a 1% agarose gel. The libraries were 
normalized to equimolar 4 nM prior to sequencing.

Bioinformatics approach and statistical analysis 

Statistical analyses and data visualization were performed 
using ‘R’ programming language and environment (R, 2018, 
https://www.r- project.org version 3.5.0). Raw reads were 
evaluated for sequence quality and trimming parameters 
using Fastqc [(http://www.bioinformatics.babraham.ac.uk/
projects/fastqc/)] and MultiQC [32]. The Divisive Amplicon 
Denoising Algorithm (DADA) 2 [33] was then used to filter 
for quality, trim, and infer amplicon sequence variants (ASVs 
were taxonomically classified to genus or higher levels using a 
Naïve Bayes classification approach [33] and SILVA ribosomal 
RNA database [34]. A maximum likelihood phylogeny 
was inferred using the R package Phangorn. The resulting 
phylogenetic tree, ASV table, taxonomy table, and sample 
metadata were combined into a Phyloseq object using the R 
package phyloseq [35] to perform community compositional 
analyses and ordination. Prior to the compositional analyses, 
non-bacterial sequences, taxa that are not classified beyond 
the Phylum level, outliers and taxa which were not prevalent 
in at least 1% of the samples were removed. Rarefaction 
curves were generated using the R package vegan [35] to 
determine if sequencing depth was sufficient. These curves 
show the number of species as a function of number of 
samples. Information regarding sequencing depth and other 
descriptors are indicated in Figures S1 and S2, and Table S1. 
The range was 108 – 23190. Samples with read counts less 
than 100 were considered too low and therefore dropped 
from subsequent analyses. 

Community compositional analyses

Alpha diversity (within-group diversity) estimates for richness 
and evenness were calculated using Shannon indexes while 
presence-absence was performed using the Simpson indexes 
[36]. The effect of various parameters on alpha diversity 
was determined using the Kruskal Wallis and Wilcoxon rank 
sum tests after confirming that the data was not normally 
distributed using the Shapiro test. Interactions were modelled 
using the R base function, “interaction”. The dunn test was 
used post-hoc analysis to determine the effect of interacting 

groups. These parameters assessed include histopathology, 
maternal characteristics, and neonatal outcomes. 

Bacterial community dissimilarity or beta diversity was 
determined using; the Bray-Curtis index which accounts 
for ASV relative abundance between samples, the Jaccard 
index which accounts for ASV presence/absence between 
samples, the UniFrac which takes into consideration the 
phylogenetic relatedness of ASVs detected. The weighted 
UniFrac considers ASV relative abundance between samples 
while the unweighted UniFrac which considers ASV presence/
absence between samples. Principal Coordinate Analysis 
(PCoA) ordinations were used to visualize sample relationships 
and statistical testing to confirm observed relatedness. 
Permutational multivariate analysis of variance (PERMANOVA) 
testing for statistical significance was performed using the 
adonis function from the Vegan R package (https://github.
com/vegandevs/vegan), (https://cran.r-project.org/web/
packages/vegan/index.html) [37].

Evaluating differential abundance

DESeq2 [38] was used to determine taxa that are differentially 
abundant between term and preterm deliveries. This 
implements the FDR/Benjamini-Hochberg method which 
ranks the genes by p-value, then multiplies each ranked 
p-value by m/rank. Prior to testing for differential abundance, 
an independent filter was used to exclude ASVs absent in at 
least 1% of the samples. ASVs were considered significantly 
differentially abundant between classes if their adjusted P 
value was <0.05 and if the estimated fold change was >1.5 
or <1/1.5. The sequence data bioproject accession for the 
requested raw read files have been successfully submitted to 
NCBI SRA: PRJNA1047970.

Results

Library preparation and data assessment

DNA was isolated from the chorioamnion of placentas from 
preterm (n=42) and term (n=20) births and subjected to next 
generation sequencing. Obtained sequences were quality 
filtered and ASVs were evaluated. Following DNA extraction 
and quality assurance, one sample had a very low read count 
(<100 reads) and was thus eliminated. The remaining 61 
samples (41 preterm and 20 term) comprised the phyloseq 
object containing 12029 taxa prior to filtering. Supervised 
prevalence filtering removed non-microbial sequences 
and taxa prevalent below 1%, before outlier detection. ASV 
outliers were removed, therefore leaving 38 preterm and 19 
term samples. 

Alpha diversity was higher among term births

Overall, there was a higher alpha diversity in term (n=19) 
samples than preterm (n=38) samples with a statistically 

https://github.com/vegandevs/vegan
https://github.com/vegandevs/vegan
https://eur01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fbioproject%2FPRJNA1047970&data=05%7C01%7CSharlene.Govender%40mandela.ac.za%7C9bdfaa2deb044566ba4d08dbf43ffa9d%7Cbd70eeb3a537435a937c7cd330dc74d8%7C0%7C0%7C638372327888544513%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=ZAf5cYQDeE5wismQ3EX17W3IWNhwP7bPGGvslba3OIs%3D&reserved=0
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significant measure of the Shannon diversity index (Figure 
1A; Kruskal-Wallis, P=0.000075). Term samples had higher 
abundance and richness of ASVs than preterm samples as 
observed by the higher Shannon diversity index. 

Alpha diversity differed significantly between placentas with 
chorioamnionitis and those without (Figure 1B; P=0.0061) and 
placentas from HIV positive vs HIV negative mothers (Figure 
1C; P=0.0089). Statistical significance was absent for mode of 
delivery (Figure 1D; P=0.75) and placentas with histological 
maternal vascular malperfusion (P=0.056), abruptio placenta 
(P=0.99), diabetes (P=0.39), smoking (P=0.44), preeclampsia 
(P=0.59), race (P=0.43), and live-birth vs stillbirth (P=0.16). 

There was a statistically significant difference between HIV 

negative term births and both HIV negative and HIV positive 
preterm births, P=0.0118 and P=0.0008, respectively (Table 3). 
This indicates that there is a difference in Shannon diversity of 
preterm placentas in association with HIV status. In contrast, 
for term placentas there was no significant difference for HIV 
positive versus HIV negative status (P=0.2858). Therefore, the 
effect of HIV cannot be ruled out in preterm birth in this study 
where HIV is a cofactor and its presence is associated with 
decreased microbial alpha diversity in preterm birth.

Beta diversity revealed for between group clustering

Principal coordinate plots (Figures 2A-2D) showed 
differences in clustering between preterm and term beta 
diversity measures. Significant differences in beta diversity 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Alpha diversity measures using the Shannon index. A. Box plot of alpha diversity for preterm and term samples (Kruskal-
Wallis, P=0.000075). B-D. Mean Standard Deviation violin plot of alpha diversity measures for; B. placentas with chorioamnionitis (CAM) vs 
placentas with no CAM (Wilcoxon rank sum, P=0.0061), C. maternal HIV negative vs HIV positive status (Wilcoxon rank sum, P=0.0089), D. 
mode of delivery as caesarean section (CS) vs. normal vertex delivery (NVD) (Wilcoxon rank sum, P=0.75).
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were seen between preterm and term samples in the Jaccard 
PCoA plot (PERMANOVA, P=0.03696) and unweighted UniFrac 
PCoA plot (PERMANOVA, P=0.003996) indicating that overall 
microbial community composition of placental samples was 
significantly different for preterm compared to term births at 
ASV level, but not for abundance (Bray Curtis PERMANOVA, 
P=0.1289 and W Unifrac PERMANOVA, P=0.1149).

Differential abundance altered for gestational age

A heat map (Figure 3A) of abundant genera between 
preterm and term pregnancies, with estimated fold change 
and P values (Figure 3B). Clustering of ASV’s between preterm 
and term samples is visually difficult to interpret from the 
heat map generated, and therefore significance in differential 
abundance was determined with Log2 fold change and 
associated P values. Statistical significance was observed for 

ASV 8 (Shuttleworthia, P=0.04), ASV 12 (Megasphaera, P=0.01), 
ASV 16 (Anaeroglobus, P=0.02) and ASV 21 (Escherichia/
Shigella, P=0.03). 

Based on the heat map generated (Figure 3A), the 
distribution of abundant genera by preterm and term 
identified that Lactobacillus were uniformly distributed in all 
preterm and term placentas (P=1.00). From visual inspection 
of the heat map and fold change values Gardnerella, 
Prevotella, Peptostreptococcus, Atopobium, Anaerococcus and 
Bifidobacterium were abundantly present in both preterm 
and term placentas. Non-bacterial sequences, unidentified 
bacteria, outliers, and taxa which were not prevalent in at least 
1% of the samples were removed from subsequent analyses.

Bacterial genera significantly differentially expressed are 
represented in orange in the Volcano plot of the DESeq results 

Table 3. Kruskal-Wallis rank sum test cross tabulation of alpha diversity measured as the Shannon diversity index between preterm 
and term birth for HIV status. 

Col Mean-
Row Mean

HIV negative Preterm HIV negative Term HIV positive Preterm

HIV negative Term
-2.263258

0.0118*

HIV positive Preterm
1.160623

0.01229*
3.169693

0.0008*

HIV positive Term
-0.808623

0.2094

0.565647

0.2858

-1.468421

0.0710

Bold*: P-values

Figure 2. Beta diversity Principal Coordinate Analysis (PCoA) plots. A. weighted (w) UniFrac, B. unweighted UniFrac, C. Bray Curtis and, 
D. Jaccard Distances demonstrating the beta diversity of the placental microbial community for preterm birth (blue) and term birth (yellow). 
The values in parentheses show the percentages of total community variation explained. 
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Figure 3. Bacterial profile of placental samples. A. Heat map of mean abundance per genus illustrating differences in Log2 Fold Change 
of prominent amplicon sequence variants (ASVs) among placental samples of preterm (n=38) and term (n=19) births. B. Most prominent 
ASVs listed at genus level, with corresponding Log2 fold change and adjusted P values. 
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(Figure 4). Bacterial genera above the horizontal line remain 
significant after multiple testing correction (False Discovery 
Rate). Those on the left of the first vertical dotted line are 
more abundant in the preterm birth while those on the right 
of the second vertical line are less abundant in preterm birth. 
ASV 21 Escherichia/Shigella (P=0.03) were more abundant in 
preterm placentas, while ASV 8 Shuttleworthia (P=0.04), ASV12 
Megasphaera (P=0.01) and ASV 16 Anaeroglobus (P=0.02) were 
less abundant in preterm placentas. 

Discussion

This study uniquely characterizes the bacterial diversity in 
placentas from complicated pregnancies in South Africa using 
next generation 16S rRNA gene sequencing in conjunction 
with full placental histology. Next generation sequencing 
was performed on 16S rRNA gene amplicons derived from 
placentas from preterm and term births. A significantly higher 
alpha diversity was found in term than preterm placenta 
samples which correlated with the higher incidence of 
chorioamnionitis in term placentas and a lower alpha diversity 
in placentas from women who were HIV positive. There was 
also a significant difference in beta diversity between term and 
preterm placentas with Escherichia/ Shigella, Shuttleworthia, 
Anaeroglobus and Megasphaera differentially abundant.

It is well established that microbial infection of the amniotic 
cavity has been implicated in adverse pregnancy outcomes 
including preterm birth [39]. However, the origin and 
characterization of these microbes is less clear, as well as their 
clinical significance, in pregnancy outcomes. 

The placental microbiome may vary with factors such as 
infant birthweight at term, maternal gestational weight 
gain, gestational diabetes, and preeclampsia [14,15,40,41]. 
Communities of bacteria were found to be spatially distinct 
within the placenta, specifically the fetal amniotic membranes, 
placental villi, and maternal basal plate [15]. Clinical vaginosis 
may be associated with changes in the placental microbiota 
[40]. Studies have shown that specific bacterial communities 
within the placental membranes were associated with preterm 
birth and chorioamnionitis and were independent of mode 
of delivery [6,42]. The growing body of evidence supporting 
the presence of a low biomass placental community or 
pathobiome in association with preterm birth risk may assist 
with clinical prediction of adverse pregnancy outcomes [43].

After quality filtering, 38 preterm and 19 term samples 
remained and were analyzed for alpha and beta diversity 
significance. Many published studies have used fewer samples 
for similar analyses; n=8 [5]; n=20 [43]; n=24 [14]; n=28 [16]; 
n=29 [17] and n=48 [11]. Together, these highlight the 
sufficiency of power within this study to detect differential 
abundance and to characterize the bacterial communities 
represented in the study groups. On the contrary, it highlights 
the need for larger study cohorts in this and similar settings to 
further validate these findings.

In this study, there was a significantly lower alpha diversity 
in preterm than term placenta samples as evidenced by the 
Shannon diversity index (Kruskal-Wallis, P=0.000075), which 
is in contrast with previous placental and vaginal microbiome 
studies [6,44]. This indicates that preterm placentas have fewer 

 

 

 

 

  

Figure 4. Volcano plot of DESeq results indicating the positive Log2 fold change - Term of differentially expressed bacteria. 
Escherichia/Shigella, Anaeroglobus, Shuttleworthia, and Megasphaera were considered statistically significant. 
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microbial constituents within their microbiome. However, the 
higher alpha diversity in term placentas compared to preterm 
placentas, and higher alpha diversity in placentas with 
chorioamnionitis compared to those without CAM (P=0.0061) 
correlates with the higher incidence of CAM in term placentas 
compared to preterm placentas (P=0.002) [27]. Prince et al. also 
found that chorioamnionitis was associated with lower alpha 
diversity in the placental membrane microbiome, although 
associated with preterm birth in their study [6]. 

The effect of various histopathology, maternal characteristics 
and neonatal outcomes on alpha diversity was determined 
with the Shannon index and statistical significance assigned 
with the Wilcoxon rank sum test. There was a mean decrease 
in alpha diversity for patients who were HIV positive in 
comparison to HIV negative (P=0.0089). This agrees with 
previous gut microbiome studies which indicate that alpha 
diversity is decreased in association with recent HIV infection 
[45,46]. In microbiome studies of the placenta, vagina or 
amniotic fluid, HIV infection is often part of the exclusion 
criteria [44,40,51] or is not evaluated as a factor contributing 
to microbiome variances [17,18,49,50].

In a review by Gootenberg et al. which addresses changes 
in the enteric microbial community in association with HIV 
infection, two key points were made which may be applicable 
to this study [45]. The first is that there is HIV-driven destruction 
of gastrointestinal CD4+ T cells which may disturb the balance 
between the microbiota and mucosal immune system, 
leading to disruption of the stable gut microbiome and 
systemic inflammation. This same mechanism may occur in 
placental tissue as HIV is known to cross the placenta leading 
to infection of the neonate in utero, which may also disrupt 
the microbial balance. The second key point is that most 
HIV-enteric microbiome studies have occurred in developed 
countries, which may not be representative of countries with 
an increased HIV disease burden and potentially hindering the 
application of these outcomes to the populations of greatest 
need. The same can also be applied to microbiome studies of 
the amniotic cavity in developed countries [17,52]. A large-
scale study by Doyle et al. reported HIV infection in 13.3% 
(n=1097) of included participants, compared to 37.5% HIV 
positive women in this study, however, they did not evaluate 
HIV infection as a factor contributing to the microbial diversity 
of the placenta [42]. In countries with a high HIV prevalence as 
well as high incidence of PTB, such as South Africa, it is of vital 
importance to further characterize the microbial diversity of 
the placenta in relation to HIV infection, PTB and associated 
outcomes. This study is the first to characterize the placental 
microbiome in South Africa, a country noted for its high 
incidence of HIV infection. In this study, Shannon diversity was 
significantly different between HIV positive versus negative 
groups in preterm birth, P=0.0008 and P=0.0118 respectively, 
implying that HIV may be a cofactor associated with decreased 
bacterial alpha diversity in placentas from preterm birth. 

No significant difference in alpha diversity was seen for 
mode of delivery (Wilcoxon rank sum, P=0.75), suggesting 
that the diversity of microbes in the placenta is not associated 
with vaginal delivery and therefore not a consequence of 
contamination of the placenta by vaginal microbiota during 
birth. This is further confirmed by the presence of Lactobacillus, 
a common vaginal commensal, in placentas from both vaginal 
and caesarean delivery (P=1.00). Other studies also reported 
no significant difference in diversity by mode of delivery 
[6,11,42]. In contrast, some studies have found bacterial 
signals in association with a vaginal mode of delivery, which 
highlights the importance of sterile sample collection 
technique when assessing microbial diversity [19,51]. Studies 
investigating the vaginal microbiome in association with PTB 
often have disparate results, which emphasizes the need for 
further investigation of niche specific microbiomes during 
pregnancy and in PTB [52,53]. Previous studies on gut and 
oral microbiomes demonstrate that certain niche bacterial 
taxa may be implicated in intrauterine infection [53-58]. The 
hematogenous spread of common oral commensals, such as 
Fusobacterium spp. and Streptococcus spp., to the placenta 
in association with chorioamnionitis may account for the 
similarities observed between placental and oral or niche 
specific microbiomes [56].

In this study, there was a mean increase in alpha diversity 
for placentas with histological chorioamnionitis compared 
to those without chorioamnionitis (P=0.0061). In contrast, 
Prince et al. found a decrease in species diversity (Shannon 
index) in preterm subjects with severe chorioamnionitis and 
Doyle et al. reported a distinct difference in bacteria, a higher 
bacterial load and lower alpha diversity (species richness) in 
association with chorioamnionitis [6,57]. Various factors may 
have contributed to the different results obtained in this study, 
including differences in the maternal cohort. Alpha diversity 
has been reported as consistently higher in women of African 
ancestry than other ancestries in the vaginal microbiome, 
which may impact the placental microbiome if infection is 
due to ascending infection [50]. Although infection in the 
chorion and amnion is not always correlated with infection 
of the amniotic fluid, chorioamnionitis can be associated 
with hematogenous or ascending microbial infection of the 
amniotic cavity, which is often polymicrobial in nature and may 
influence species diversity in the preterm group [58]. In this 
study setting, patients in preterm labor are given prophylactic 
antibiotic treatment with erythromycin (Zithromax 500 mg 
daily) and the use of antibiotics for prophylaxis, suspected 
infection or clinically diagnosed chorioamnionitis may also 
have influenced the alpha diversity in this cohort of high-risk 
pregnancies. This is a limitation of the study as the information 
on duration of antibiotic prophylaxis administered to certain 
patients in preterm labor was not available. Prince et al. 
found that antibiotic use made no significant alteration to 
prevalent taxa at genus level in preterm and term placentas 
and suggested that variations in the placental membrane 
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microbiome may be associated with inflammation rather than 
infection [6]. 

The graphical representation of beta diversity in a PCoA plot 
indicates the similarity of microbiomes at the genus level 
between individual samples. Subjects can be characterized 
by categorical variables (e.g., preterm or term birth) and then 
visualized where each group clusters in relation to principal 
components (PC) on the axes. Most programs indicate the 
percentage of the difference between samples for each 
principal component. The higher the percentage, the more 
one can conclude that clusters are because of specific taxa, 
or lower percentages indicate that differences are based on 
multiple taxa which implies that no specific taxa are correlated 
with the outcome of preterm birth [15]. 

Upon analyzing beta diversity, a significant difference in 
clustering was found by PERMANOVA for the unweighted 
UniFrac distance (P=0.003996) and Jaccard distance 
(P=0.03696) on the PCoA plots, which indicate the richness 
and diversity of microbes significantly differs at the ASV level 
between preterm and term placentas. The large percentage 
for PC1 (44.3%) on the weighted UniFrac PCoA plot indicates 
that clustering may be a result of specific bacterial taxa 
shaping beta diversity between preterm and term placentas. 
These observations are consistent with previous evidence 
suggesting that the placental microbiome is altered in 
placentas from preterm birth [6,11,59]. 

Genera that were differentially abundant and were 
considered statistically significant were Escherichia/ Shigella, 
Shuttleworthia, Anaeroglobus and Megasphaera. Escherichia 
were found more abundantly in preterm placentas while 
Shuttleworthia, Anaeroglobus and Megasphaera were more 
abundant in term placentas. Escherichia spp. are considered as 
both human commensals and opportunistic pathogens and 
have been found in the urogenital and reproductive tracts. 
Escherichia was reported as one of the principal members 
of the placental microbiota and also in low abundance 
[6,11,13,14,17].

A study by Aagaard et al. also detected a higher abundance 
of Escherichia in the placenta and proposed that the presence 
of Escherichia in meconium, which is strongly associated 
with early onset neonatal sepsis, may be consistent with 
intrauterine seeding with the placenta acting as a reservoir 
[11]. They also suggest that the presence of oral bacteria in 
the amniotic cavity, such as Fusobacterium nucleatum, may 
facilitate hematogenous transmission of other bacteria during 
placentation by altering the mucosal permeability of the 
vascular endothelium [11,60]. Anaeroglobus is a relatively newly 
classified pathogen belonging to the family Veillonellaceae 
and is closely related to Megasphaera [60]. Megasphaera and 
Shuttleworthia have been strongly associated with bacterial 
vaginosis, which is linked to preterm birth [62-64]. The known 
association with bacterial vaginosis suggests that the presence 

of these bacteria within the placenta may arise because of 
ascending infection. However, in this study Megasphaera and 
Shuttleworthia were found more abundantly in term placentas 
from high-risk pregnancies which suggests their role may 
be associated with other adverse outcomes, though this 
association should be investigated further. 

In bacterial vaginosis there is a shift in the Lactobacillus 
dominated microbiota to overgrowth of Gram negative or 
anaerobic bacteria such as Megasphaera spp., Gardnerella 
vaginalis, Atopobium spp., Prevotella, Ureaplasma spp., or 
M. hominis. Megasphaera has previously been associated 
with an increased risk of spontaneous preterm birth [63,65]. 
Lactobacillus are prevalent in the intestinal and vaginal flora, 
which may suggest that their presence in the placenta arises 
as a result of ascending transmission [15]. The ubiquitous 
presence of Lactobacillus in the placentas of preterm and term 
birth in this study may indicate that they are commensals, 
not associated with pathology of preterm birth, and are 
not influenced by mode of delivery as they were present in 
placentas delivered by caesarean section and therefore not 
exposed to vaginal flora during delivery. An overall increased 
bacterial diversity, together with a depletion of Lactobacillus, 
has been described as a universal marker for diagnosis of 
bacterial vaginosis [66]. 

This study used primers that targeted the V3-V4 region to 
amplify the 16S rRNA gene for next generation sequencing. 
Other studies have used V3–V4, as well as 16S regions V1–
V3, and V6-8 [11,14,67]. Parnell et al. sequenced all nine 
variable regions of the 16S rRNA gene and compared results 
according to total amplification and amplification of negative 
controls [15]. They reported that targeting the areas flanking 
the V4 region successfully amplified DNA in most samples, 
had sufficient reads for analysis and the lowest incidence 
of reads in negative controls compared to other variable 
regions. Studies of samples with low microbial biomass, such 
as the placenta, are particularly vulnerable to contamination, 
either ‘kitome’ or ‘splashome’, during processing and should 
consider additional measures for absolute abundance of 
total 16S rRNA gene copies, i.e., qPCR, to validate sequence 
analysis and avoid reporting false positive signals [15,18,42]. 
This is a potential limitation of this study, as qPCR was not 
performed for placental samples and the two methods of PCR 
(conventional and next generation sequencing of 16S rRNA) 
already underscored discrepancies in bacterial detection. This 
may lead to under-reporting of bacterial species in studies 
where only the next generation sequencing of 16S rRNA 
genes is used for detection. 

The following limitations should be acknowledged; the 
term control group was from high-risk pregnancies delivered 
at a tertiary hospital which specializes in complicated cases, 
and so does not represent a true ‘healthy’ term pregnancy 
cohort. The use of antibiotics was not routinely monitored by 
researchers, and therefore antibiotic use may have influenced 
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the microbiota present in the placenta, although Prince et 
al. report minimal influence of antibiotics on the placental 
microbiome in their study [6]. There was also a delay from 
sample collection to the NGS experiment of approximately 
11 months and at least two freeze-thaw cycles before tissues 
were excised for DNA extraction, which may have influenced 
the integrity of the samples, although stored in RNAlater at 
-80°C. The concern of contamination is currently a hot topic 
in studies of low-biomass samples [18]. Contamination may 
occur during the automated DNA extraction process as well 
as during the sequence library build process if samples are 
not randomized for sequencing at a minimum. However, 
the results of this study show significant differences in alpha 
diversity between placentas from preterm vs term birth 
and in association with chorioamnionitis and maternal HIV 
status, as well as beta diversity with differentially expressed 
bacterial genera. The total study cohort is also relatively 
homogenous with regards to maternal race, therefore this 
factor could not be used for microbial diversity analysis. It is 
known that racioethnicity influences the vaginal microbiome 
during pregnancy [50] and as such, this study offers a unique 
cohort of predominantly African women who are considered 
‘high risk’ for preterm birth and certainly adds to the body of 
knowledge on microbiomes of a specific cohort in the South 
African context.

A South African study by Lennard et al. found that the 
vaginal microbiome varies by geographical location between 
two cities within the same country [68]. They suggested 
that clinical diagnostic and therapeutic approaches be 
tailored accordingly as women from different cities but from 
similar low-income high population density communities, 
and otherwise analogous demographics, had significantly 
different vaginal microbiomes. This emphasizes the effect of 
cohort selection on microbial diversity analysis where very 
few studies from low to middle income countries have been 
reported.

Conclusion

This is the first South African study to characterize the bacterial 
diversity in placentas from complicated pregnancies using 
next generation 16S rRNA gene sequencing in conjunction 
with full placental histology. Microbial diversity differs 
between preterm and term placentas where HIV may act as 
a cofactor associated with decreased bacterial alpha diversity 
in placentas from preterm birth. Characterizing the bacteria 
in the placenta has contributed to further understanding of 
the pathology associated with preterm birth. This has the 
potential to predict clinical pathology in the fetus, thereby 
reducing the risk of preterm birth and its associated adverse 
outcomes. 
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