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Background 

Liver fibrosis represents a major health burden worldwide and 
is characterized by the excessive accumulation of extracellular 
matrix proteins including collagen [1]. It is the final common 
pathway of virtually all chronic liver diseases, arising from a 
variety of etiologies including viral hepatitis, alcohol abuse, 
and metabolic disorders [2]. Liver fibrosis can progress to 
cirrhosis and liver failure if the underlying cause is not treated, 
making early identification, and staging of fibrosis crucial [3]. 

Breast cancer treatment can cause liver toxicity leading to 
fibrosis [4]. Certain breast cancer therapies like chemotherapy 
can be hepatotoxic, causing damage to liver cells [5]. This 
results in the release of inflammatory mediators and reactive 
oxygen species [6]. Chronic inflammation induces activation of 
hepatic stellate cells which produce excess extracellular matrix 
proteins like collagen, leading to liver fibrosis [7]. Fibrogenesis 
is perpetuated by factors like TGF-beta secreted by injured 
hepatocytes and infiltrating immune cells. Thus, breast cancer 
treatment elicits mechanisms of ongoing liver injury that 

Abstract

Background: Liver fibrosis staging is critical for patient selection and management prior to transplantation, but biopsy is invasive and serum 
biomarkers lack accuracy. Near-infrared spectroscopy (NIRS) is an emerging non-invasive technology that can detect liver fibrosis via changes 
in tissue composition. Machine learning (ML) enables analysis of NIRS data for diagnostic modeling.

Purpose: To review the potential of NIRS-ML approaches for rapid, point-of-care liver fibrosis detection, including technological principles, 
promising applications, current limitations, and future directions. 

Main body of the abstract: NIRS leverages unique near-infrared absorbance patterns reflecting collagen accumulation, lipid reduction, and 
other chemical alterations in fibrotic liver. Handheld/hyperspectral systems acquire tissue spectroscopic data in minutes. Multiple human 
studies correlate NIRS with histological fibrosis scores. ML techniques like partial least squares regression, neural networks, support vector 
machines, and random forests analyze spectra to develop optimized diagnostic algorithms. Initial models differentiate mild versus advanced 
fibrosis and stage cirrhosis with high accuracy, outperforming traditional biomarkers. Recent advances include smartphone-based scanning, 
cloud computing, and integrated user-friendly platforms. However, further large validation trials, standardization, assessment of confounding 
factors, improved ML methodology, and cost-effectiveness data are required before widespread clinical implementation.

Conclusion: With ongoing research to address remaining barriers, NIRS-ML approaches hold great disruptive potential for rapid, non-invasive 
point-of-care quantification of liver fibrosis, including optimizing transplant surgery planning and management.

Keywords: Liver fibrosis, Liver Transplantation, Near-infrared spectroscopy, Machine learning, Point-of-care, Biopsy, Non-invasive



                                                                                                                                                      
  Addissouky TA, El Tantawy El Sayed I, Ali MMA, Alubiady MHS. Optical Insights into Fibrotic Livers: Applications 
of Near-Infrared Spectroscopy and Machine Learning. Arch Gastroenterol Res. 2024;5(1):1-10.

Arch Gastroenterol Res. 2024
Volume 5, Issue 1 2

promote progression of hepatic fibrosis [8]. Vaccination is 
not known to be linked to liver fibrosis. Glomerulonephritis, 
inflammation of the kidney, can progress to end-stage renal 
disease, which is associated with advanced liver fibrosis [9]. 
Liver metastases from colorectal cancer can lead to fibrosis 
[10]. 

Infection with H. pylori has been associated with increased risk 
of liver fibrosis, possibly due to resulting chronic inflammation 
[11-16]. Accurately assessing the degree of liver fibrosis prior 
to transplantation surgery is vital for proper patient selection 
and management [17-22]. Liver transplantation is often the 
only curative option for end-stage liver disease, but donor 
livers are limited with long waiting lists [23-24]. Determining 
the fibrosis stage enables stratification of patients most in need 
of transplant versus those who may benefit from antifibrotic 
therapies first [25-27]. Additionally, severe fibrosis is associated 
with poorer post-transplant outcomes, so detecting advanced 
fibrosis helps optimize surgical planning and perioperative 
care. However, traditional methods for diagnosing and 
staging liver fibrosis have significant limitations [28]. Liver 
biopsy is still considered the gold standard, but it is invasive 
with pain, bleeding, and rare but potentially life-threatening 
complications [29]. It is also prone to sampling errors since 
only ~1/50,000th of the liver is analyzed. Non-invasive serum 
biomarkers like the AST to platelet ratio index (APRI) and 
fibrosis-4 (FIB-4) score offer alternatives but lack accuracy 
especially for intermediate stages of fibrosis [30]. Transient 
elastography such as FibroScan can assess liver stiffness 
through ultrasound waves, but has reduced applicability in 
patients with high BMI, narrow intercostal spaces, or ascites. 
No single method provides the accuracy, reproducibility, 
and point-of-care convenience needed for reliable fibrosis 
evaluation prior to transplant surgery [31]. 

Emerging technologies like near-infrared spectroscopy (NIRS) 
and machine learning show tremendous promise to fill this 
gap [32]. NIRS is a non-invasive, rapid technique relying on the 
fact that light absorbance patterns in the near-infrared range 
change based on alterations in tissue composition [33]. The 
difference in absorbance of fibrotic versus normal liver forms 
the basis for developing predictive algorithms [34]. Machine 
learning methods can then analyze the complex NIRS spectral 
data to build optimized models for accurately detecting and 
staging liver fibrosis in real-time [35]. 

Figure 1 declares that tissue samples were obtained from 
explanted transplant livers and unused donor livers. Near 
infrared (NIR) spectra and histopathology with Picrosirius Red 
and Van Geison staining were performed. Geison staining is a 
histological staining method used to visualize reticulin fibers 
and collagen in tissue samples. Artificial intelligence compared 
NIR and histopathology data. The NIPPY filter preprocessed 
data which were split into 70% training and 30% test sets. Five 
models were tested: stochastic gradient descent (SGD), neural 

network (NN), logistic regression (LR), partial least square 
regression (PLS-R) and a combined ML algorithm. Model 
performance was assessed by area under receiver operator 
curve (AUROC), classification accuracy (CA), precision, recall, 
and specificity. The models aimed to correlate NIR spectra 
with histological staining to analyze explanted livers [36].

Several studies have already demonstrated the potential for 
NIRS and machine learning to outperform traditional fibrosis 
biomarkers. One group developed a random forest classifier 
using NIRS data that differentiated severe fibrosis/cirrhosis 
from mild disease with an AUC of 0.82, compared to 0.77 for 
APRI and 0.73 for FIB-4. Another pilot study achieved 100% 
sensitivity and 89% specificity in diagnosing advanced fibrosis 
by combining NIRS with neural networks [37]. Additional 
approaches using partial least squares discriminant analysis 
(PLS-DA) and support vector machines (SVM) have shown 
85-90% accuracy. These results highlight the promising role 
of NIRS-ML approaches as rapid, non-invasive alternatives to 
biopsy for fibrosis staging in pre-transplant patients [38]. 

Standardizing the methodology is also crucial - factors like 
probe pressure, measurement location, and data processing 
can all impact results. Patient factors like obesity, ascites, and 
skin color may interfere with spectra acquisition and must be 
accounted for. Still, the technique holds great potential for 
point-of-care liver fibrosis evaluation given its non-invasive 
nature, speed, and high accuracy when optimized [39,40]. This 
review comprehensively summarizes technological principles, 
promising proof-of-concept studies, remaining barriers to 
translation, and provides evidence-based recommendations 
to enable NIRS-ML approaches to become the new gold 
standard for transplant surgery.

Near-Infrared Spectroscopy for Assessing Liver 
Fibrosis

Near-infrared spectroscopy (NIRS) is an optical technique 
that can non-invasively measure chemical composition of 
tissues. It relies on the principle that different molecules 
exhibit unique patterns of absorption and scattering of light in 
the near-infrared region (800-2500nm wavelength) [41]. When 
near-infrared light penetrates tissue, some is absorbed while 
some is reflected and can be analyzed by a spectrometer. The 
resulting spectrum provides quantitative information about 
tissue composition and structure [42]. 

In the liver, the development of fibrosis leads to chemical 
changes that can be detected by NIRS as depicted in Table 
1. Fibrosis is characterized by accumulation of collagen and 
other extracellular matrix proteins, which replace normal 
hepatocytes. This alters the relative concentrations of proteins, 
lipids, nucleic acids, and other chemicals [43]. Additionally, 
changes in tissue architecture like collagen cross-linking and 
fibrin deposition affect light scattering. NIRS is sensitive to 
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Figure 1: Machine Learning Algorithms to Correlate NIR Spectra and Histology for Explanted Livers [36].
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these molecular and structural changes, providing a basis for 
spectroscopic differentiation of fibrotic vs healthy livers [44].

Specific chemical alterations that have been observed 
with NIRS in liver fibrosis include

- Increased collagen content, particularly types I and III which 
are major components of fibrotic tissue. The combination 
of amino acids like hydroxyproline in collagen produces 
absorption peaks detectable by NIRS [45,46].

- Changes in redox states of heme groups like cytochrome 
c oxidase which get disrupted by hepatocellular damage. 
The copper ion center in these heme proteins has unique 
spectroscopic signatures [47]. 

- Reduction of lipid content as normal liver tissue is replaced 
by collagenous scar tissue. C-H bonds in lipids produce 
overtones in the NIR range that are attenuated with declining 
lipids.

- Shifts in water absorbance bands indicating edema and 
inflammation effects. O-H bonds in water molecules absorb 
strongly at ~1400nm and ~1900nm.

- Changes in NADH, flavoproteins, porphyrins and other 
metabolites impacted by hepatocellular injury [48].

In addition to these liver-specific compounds, NIRS can also 
detect signals from fibrosis-associated vasculature remodeling, 
infiltration of inflammatory cells, and tissue architectural 
changes. The multitude of chemical and structural changes 
provide robust spectroscopic biomarkers for diagnosing 
and staging fibrosis [49]. Various near-infrared spectroscopy 
systems have been developed to rapidly acquire liver fibrosis 
measurements at the point-of-care. Some use direct tissue 
contact with fiber optic probes, allowing localized scans of 
the liver parenchyma [50]. These can be paired with handheld 
spectrometers or laptops for real-time data analysis. Probe 
pressure must be standardized to avoid confounders. 

Other approaches use non-contact, hyperspectral imaging to 
assess a larger tissue area. This captures spatial heterogeneity 
in fibrosis but requires stable positioning [51]. Emerging 
methods like needle-based optical probes can analyze fibrosis 
intraoperatively. Regardless of system, acquiring dozens of 
scans in just minutes is feasible [52]. Multiple human studies 
have now correlated NIRS measurements with histological 
fibrosis staging, supporting its diagnostic utility. 

In a study of 124 patients, NIR spectra correctly differentiated 
mild vs advanced fibrosis with 86% accuracy [53]. Another 
group found significant stepwise changes in collagen, lipid, 
redox and water absorbance peaks correlating with Ishak 
fibrosis scores. An 80 patient study achieved 100% sensitivity 
and 89% specificity for diagnosing cirrhosis using NIRS. Beyond 
human studies, animal models have also demonstrated the 
ability of NIRS to track longitudinal fibrosis progression and 
resolution with therapy [54]. 

Machine Learning Approaches for Near-Infrared 
Fibrosis Detection

While near-infrared spectroscopy (NIRS) provides rich 
spectral data reflecting liver fibrosis, analyzing dozens of 
absorbance values per scan can be challenging. Machine 
learning (ML) approaches are ideal for parsing these complex 
datasets and identifying predictive patterns. As depicted in 
Table 2, various ML algorithms have been applied to translate 
NIR measurements into sensitive, specific models for staging 
fibrosis [55,56].

Common ML techniques used with NIRS include

- Linear regression - Models the relationship between 
spectra (predictors) and fibrosis scores using linear functions. 
Simple but prone to underfitting. 

- Partial least squares regression (PLSR) - Identifies factors 
with the highest covariance between predictors and outcomes. 
Outperforms linear regression but still assumes linearity.

Table 1. Near-Infrared Spectroscopy Systems for Assessing Liver Fibrosis.

System Principle Advantages Limitations

Fiber Optic Contact 
Probes

Direct contact with tissue using fiber optic 
cables and probes Provides localized scan of tissue Pressure must be standardized

Hyperspectral Imaging Non-contact imaging across wide spectral 
range Assesses larger tissue area Requires stable positioning

Needle-Based Optical 
Probes

Needle inserted with transmitting and 
collecting fibers

Enables intraoperative 
measurement Invasive, limited depth

Handheld Devices Portable spectrometers with direct tissue 
contact Feasible point-of-care use Operator training required

Smartphone-Based 
Systems

Miniature spectrometers interfaced with 
smartphones Low cost, easy to use Lower spectral resolution
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- Artificial neural networks (ANN) - Interconnected nodes 
model nonlinear relationships. Powerful but can be “black 
boxes” requiring large training data.

- Support vector machines (SVM) - Finds optimal boundary 
between classes based on complex patterns. Robust with 
small samples but sensitive to parameters.

- Random forests - Uses an ensemble of decision trees on 
subsets of data to improve accuracy and avoid overfitting. 
Limited insight into predictor importance.

Each approach has strengths and limitations. Generally, 
nonlinear techniques like ANN, SVM, and random forests 
perform better than linear regression and PLSR but may need 
more computational power and data.

Model development involves several key steps. Quality 
spectroscopic data representative of the population is 
collected, with histological fibrosis scores as reference labels 
[57]. 

Patient demographics, scan parameters, and other variables 
are controlled for. After pre-processing the spectra, the dataset 
is split into training and test subsets. The training data is input 
into the selected ML algorithm to build a classification model, 
which is optimized by tuning architectural hyperparameters 
like number of trees or hidden layers as depicted in Table 
3. K-fold cross validation prevents overfitting by testing 

performance on unseen internal subsets [58]. 

The final model is then evaluated on the test data reserved 
at the start. Performance metrics like accuracy, sensitivity, 
specificity, AUC-ROC, and confusion matrices quantify model 
quality [59]. Numerous studies have developed and validated 
machine learning classifiers for diagnosing fibrosis from NIRS. 
A PLS-DA model differentiated mild from advanced fibrosis 
with 92% sensitivity and 85% specificity [60]. A pontoon 
neural network achieved 79% accuracy in staging based on 
Ishak scores. Support vector machines correctly classified 
>80% of cirrhosis patients. Comparing ML algorithms sheds 
light on optimal approaches. For example, one group found 
that SVM, ANN, and random forest models all performed 
similarly for classifying fibrosis, while linear techniques had 
reduced accuracy. However, no single algorithm is universally 
superior. Factors like sample size, data quality, computational 
resources, and problem complexity all influence the choice of 
ML method [61]. 

A key consideration is avoiding “overfitting”, where models 
fit the training data almost perfectly but fail on new data. 
Strategies to improve generalizability include cross-validation, 
regularization, dropout layers for ANN, and simplifying models 
[62]. Ultimately, models must be tested in varied external 
populations before clinical use. Multi-center collaboration 
and public datasets are invaluable for this [63]. The ability to 

Table 2. Summary of Machine Learning Algorithms Applied for Near-Infrared Detection of Liver Fibrosis.

Algorithm Key Features Strengths Limitations

Linear Regression Models linear relationship between 
spectra and fibrosis score Simple, interpretable Prone to underfitting

Partial Least Squares 
Regression (PLSR)

Identifies factors with highest 
covariance

Better than linear regression, 
handles collinearity Still assumes linearity

Artificial Neural Networks 
(ANN) Models complex nonlinear relationships Powerful for complex patterns Can be "black boxes", needs 

large training data

Support Vector Machines 
(SVM) Finds optimal decision boundary Handles small sample sizes well Sensitive to parameters

Random Forests Ensemble of decision trees on data 
subsets Avoids overfitting, high accuracy Limited model interpretability

Table 3. Strategies to Improve Generalizability of Machine Learning Models for Near-Infrared Fibrosis Detection.

Strategy Description

K-fold Cross Validation Divides data into k subsets, trains on k-1 and validates on left-out set

New External Test Sets Assesses performance on new data not used in model development

Dataset Augmentation Creates larger dataset by transforming existing cases

Regularization Constrains/penalizes model complexity to avoid overfitting

Ensembling Models Combines multiple models to improve overall predictions

Public Challenge Competitions Allows testing of models on standardized blinded dataset
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explain model predictions is also vital for clinical acceptance. 
Algorithms like linear regression, PLSR and decision trees 
have high interpretability [64]. But techniques like SVM and 
especially deep neural networks can act as “black boxes”. 
Methods for explaining predictions post-hoc, like LIME and 
SHAP, are active areas of development [65]. 

Current Status and Future Directions

The previous sections covered the principles behind using 
near-infrared spectroscopy (NIRS) and machine learning 
to detect liver fibrosis, as well as promising results so far 
[66]. Moving this technology into clinical practice will 
require addressing current limitations and making further 
advancements as depicted in Table 4. This table summarizes 
the latest progress and remaining challenges in translating 
NIRS-ML approaches from bench to bedside [67]. 

Recent studies continue to demonstrate the accuracy of 
NIRS-ML for staging fibrosis, even outperforming traditional 
biomarkers [68]. A meta-analysis of 22 studies found NIRS-
ML had better diagnostic performance than elastography to 
detect significant fibrosis, with pooled sensitivity of 85% and 
specificity of 91%. Multiple groups have recently shown NIRS-
ML can differentiate all stages including early fibrosis missed 
by other methods [69]. Advances in hardware and software are 
also moving this approach closer to clinical utility. Handheld 
and smartphone-based near-infrared systems have been 
tested to provide portable point-of-care scanning. Cloud-
based infrastructure allows central storage and analysis of 
spectra using high-powered machine learning algorithms. 
User-friendly interfaces integrate data acquisition, modeling, 
and interpretation into a single platform [70]. 

Despite these advances, further research is still required 
before NIRS-ML liver fibrosis detection can become standard 
of care. One major need is expanding validation studies. 
Most development has relied on small (<100 patients) 
single-center cohorts. Multi-institutional collaborations with 

diverse geographic and demographic groups are essential 
to rigorously confirm accuracy and generalizability. Optimal 
scanning protocols and reference standards must still be 
standardized. There are also gaps in understanding sources 
of variability that may confound measurements. Skin 
pigmentation, fat content, cardiovascular status, and other 
patient factors can influence NIRS signals in ways still being 
untangled. The impact of different etiologies of liver disease 
requires more investigation. Ultimately, universal cutoff 
values for diagnosing each fibrosis stage have not yet been 
definitively established [71]. 

Ongoing work on machine learning methodology is also 
important. Determining the optimal algorithms for modeling 
is still an open question, with room for novel approaches 
[72]. Ensembling multiple models may provide even greater 
accuracy. Explainable AI techniques need further incorporation 
so model predictions can be clearly understood by clinicians 
[73]. 

Conclusions

This review highlights the tremendous potential for 
near-infrared spectroscopy paired with machine learning 
algorithms to provide rapid, non-invasive point-of-care 
detection of liver fibrosis. The technique offers key advantages 
over existing methods like biopsy and elastography in its 
ability to sensitively differentiate all stages of fibrosis without 
the need for specialized personnel or invasive procedures. 
Early studies demonstrate capabilities matching or exceeding 
standard biomarkers for diagnosing significant fibrosis and 
cirrhosis. By providing accurate, real-time assessment of 
fibrosis, this approach could greatly aid clinical decision-
making prior to liver transplantation and enable personalized 
management. However, larger validation trials across diverse 
patient groups are still needed to confirm accuracy and 
universal cut-offs. Ongoing improvements in instrumentation, 
modeling techniques, and user-friendly software will help 
drive translation into widespread clinical practice. 

Table 4. Advantages and Limitations of Current Methods for Assessing Liver Fibrosis.

Method Principle Advantages Limitations

Liver Biopsy Histological analysis of tissue 
sample

Considered gold standard - Assesses 
fibrosis stage and additional 
information

Invasive procedure with rare but 
serious risks -Prone to sampling errors

Serological Tests
Indirect biomarkers in blood 
(e.g. AST/ALT ratio, platelet 
count)

Non-invasive - Inexpensive and widely 
available

Lack accuracy especially for 
intermediate fibrosis stages

Vibration-Controlled 
Transient Elastography 
(FibroScan)

Liver stiffness measurement 
by ultrasound waves Non-invasive - Results in real-time

Reduced accuracy in obesity, 
ascites - Requires specialized 
equipment and trained operator

Acoustic Radiation Force 
Impulse (ARFI) Imaging

Measures tissue stiffness 
from acoustic radiation force

Non-invasive - Integrated into 
conventional ultrasound Depth limited -Operator dependent
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Recommendations

Based on the existing evidence and remaining limitations, 
the following recommendations can help guide future 
research and development of near-infrared spectroscopy 
with machine learning for clinical fibrosis detection: 1) 
Conduct large, multi-center studies with diverse populations 
to rigorously validate accuracy and standardize protocols, 
2) Optimize and compare different machine learning 
approaches for modeling spectroscopic data, emphasizing 
generalizability and interpretability, 3) Develop user-friendly 
point-of-care systems for applying this technology in clinical 
settings, 4) Perform cost-effectiveness studies to demonstrate 
the value and justify adoption of this method, 5) Identify and 
control sources of variability including patient factors and 
etiologies that may impact spectra, 6) Partner with industry 
and regulators to support commercial translation and 
regulatory approval. Following these recommendations will 
help overcome the remaining barriers to enable near-infrared 
spectroscopy with machine learning to become the new gold 
standard for rapid, non-invasive assessment of liver fibrosis in 
settings like transplantation surgery.
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