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Introduction

HFSCs represent a distinct category of stem cells localized 
within HF, characterized by unique biological attributes 
and functionalities primarily implicated in the growth, 
development, and regeneration of hair. Notably, HFSCs 
are not only pivotal for fostering hair growth but also play 
a crucial role in the reparative processes of skin wounds [1-
3]. Substantial evidence supports the assertion that HFSCs 
assume a central position within multiple skin components 
surrounding tissue HF thereby functioning as key tissue centers 
during adult skin homeostasis. Diverse signaling pathways, 
including Wnt/β-catenin, TGF-β/BMP, Notch, among others, 
intricately participate in the regulatory milieu governing the 
activities of HFSCs. These signaling pathways exert a profound 
impact on the self-renewal, differentiation, and cellular fate 
determinations of HFSCs.

HFSCs are strategically positioned within specific zones of 
the HF, notably within the coat sheath (outer root sheath) and 

the hair papilla (hair bulb) [4]. These anatomical regions are 
deemed critical for the viability and functionality of HFSCs. 
Possessing the remarkable capability for self-renewal and 
differentiation into diverse cell lineages, HFSCs emerge as 
pivotal contributors to the intricate orchestration of hair 
growth, instigating the generation of new hair cells that propel 
the continuous cycle of hair growth and renewal. Within the 
hair growth cycle, HFSCs actively partake in the regulation of 
distinct phases, encompassing the growth period (Anagen), 
regression period (Catagen), and rest period (Telogen) [5]. 
Notably, during the growth phase, HFSCs undergo active 
differentiation, instigating the robust growth of hair. 

The skin, being the largest organ in the human body, 
undergoes meticulous regulation of homeostasis orchestrated 
by its diverse niches. Among these, HFSCs emerge as a crucial 
subset of stem cells, playing a pivotal role in sustaining skin 
homeostasis through intricate interactions with various 
ecological niches, including vasculature, nerves, and the 
extracellular matrix (ECM). In our discussion today, we delve 
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into the signaling pathways associated with HFSCs and explore 
the dynamic crosstalk between HFSCs and other niches, 
aiming to deepen our understanding of the multifaceted 
functions of HFSCs within the intricate landscape of the skin. 

Signaling Pathways

Epidermal homeostasis is intricately governed by the 
regulatory influence of HFSCs within the skin. This regulatory 
role is contingent upon a sophisticated network characterized 
by the interplay of multiple signaling pathways, including 
but not limited to the Wnt/β-catenin, TGFβ/BMP, Notch, and 
Hedgehog pathways, as illustrated in Figure 1.

The Wnt/β-catenin signaling pathway constitutes a pivotal 
cell signaling cascade, assuming a critical role in diverse 
biological processes encompassing embryonic development, 
the preservation of tissue homeostasis, and the determination 
of cellular fate [6]. Wnt proteins, a category of secreted 
signaling molecules, engage Frizzled (Fz) receptors on 
the cellular membrane, instigating downstream signaling 
events. In the absence of Wnt ligands, a destruction complex 
comprising Axin, adenomatous polyposis coli (APC), and 
glycogen synthase kinase 3β (GSK-3β) phosphorylates 
β-catenin, marking it for subsequent degradation by the 

proteasome. This mechanism maintains a basal intracellular 
β-catenin level. Upon Wnt ligand binding to its receptor, 
inhibition of the destruction complex occurs, preventing 
β-catenin phosphorylation and degradation. Consequently, 
β-catenin accumulates in the cytoplasm, translocating to 
the nucleus. Within the nucleus, β-catenin associates with T 
cell factor/lymphocyte enhancer, thereby activating target 
genes. The target genes modulated by β-catenin, subsequent 
to its nuclear translocation, participate in the orchestration of 
various cellular processes, encompassing but not limited to 
cell proliferation, differentiation, and survival [7]. A significant 
interrelationship is evident between the Wnt/β-catenin 
signaling pathway and HFSCs, exercising a crucial regulatory 
impact on the initiation, proliferation, and differentiation of 
HFSCs. The activation of the Wnt/β-catenin pathway emerges 
as a compelling force propelling HFSCs into the Anagen 
phase. Throughout this phase, the Wnt signaling pathway 
intricately directs the stabilization of β-catenin, enabling 
its translocation into the nucleus, where it orchestrates the 
activation of a repertoire of genes intricately linked to the 
process of HF growth [7,8]. Noteworthy in the Wnt/β-catenin 
pathway are Wnt proteins that assume a critical role in the 
activation of HFSCs. For instance, Wnt7b, whose protein 
expression initiates during the initial growth period, has been 
demonstrated to be indispensable for the activation of HFSCs, 

 

 

 

Figure 1. Signaling pathways network of HFSCs. Wnt/β-catenin, TGFβ/BMP, Notch, and Hedgehog signaling pathways form a signaling 
network to jointly activate HFSCs, promoting their proliferation and differentiation. The black arrowheads show the interaction of signaling 
pathways.
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as its postnatal knockout halts this activation process [9,10]. 
Conversely, experimental overexpression of Wnt10b, a distinct 
member of the Wnt protein family, has been demonstrated to 
induce the transition of HF from the quiescent phase to the 
growth phase [11]. Contrarily, the targeted knockdown of 
Wnt10b impedes the initiation of HF into the Anagen phase 
[12]. HFSCs, as multipotent stem cells, manifest the capability 
for differentiation into a myriad of cell types, encompassing 
adipocytes, chondrocytes, neurons, or smooth muscle cells 
[13-18]. Shen et al. documented the central involvement of 
β-catenin in the initiation of HFSCs differentiation through 
the activation of the nuclear gene c-myc [19]. In summary, the 
intricate regulation of HFSCs by the Wnt/β-catenin signaling 
pathway constitutes a complex and pivotal process, bearing 
significant implications for various facets of HF dynamics.

The activation of TGF-β/BMP signaling pathway can 
elicit a spectrum of cellular responses, encompassing cell 
proliferation, differentiation, apoptosis, as well as the synthesis 
of the ECM [20,21]. TGF-β and BMP represent two closely 
related classes of cytokines functioning as signaling molecules 
that mediate cellular communication. These cytokines 
initiate signaling by binding to their respective receptors, 
culminating in the phosphorylation of Smad proteins and 
the formation of an activated Smad protein complex. This 
complex translocates into the nucleus, where it engages 
with other transcription factors to intricately regulate the 
transcription of specific genes. Analogously, the TGF-β/BMP 
signaling pathway assumes a pivotal role in the development, 
growth, and regulation of HFSCs. Within the context of this 
signaling pathway, the nuclear interaction between TGF-β/
BMP and Smad proteins serves as a facilitator for the induction 
of transcription of pertinent target genes [22-26]. This 
transcriptional activity functions as a regulatory mechanism, 
delicately modulating the proliferation and differentiation 
of HFSCs. The collective evidence underscores the pivotal 
role of the TGF-β/BMP signaling pathway in shaping the 
dynamics of HFSCs in a consistent manner. Notably, the BMP 
antagonist, Noggin, emerges as an instrumental factor in the 
regulation of HFSCs. BMP-4 intricately interacts with Noggin 
to finely modulate the differentiation of HFSCs, guiding them 
towards the development of sebaceous glands, sweat glands, 
and epidermal cells through the overexpression of lymphoid 
enhancer-binding factor (LEF) molecules [27]. Concurrently, 
the TGF-β/BMP signaling pathway demonstrates regulatory 
control over the Wnt/β-catenin signaling pathway by 
promoting the upregulation of Dickkopf3 (DKK3) molecules 
[28,29]. This intricate interplay underscores the nuanced 
regulatory mechanisms involved in orchestrating the activities 
of HFSCs.

The Notch signaling pathway represents a highly conserved 
mechanism of cellular signaling [30]. The interaction between 
the Notch receptor and its ligand serves as a regulatory 
mechanism governing cell proliferation, differentiation, 
and fate decisions [31,32]. The Notch signaling pathway has 

the capacity to promote the differentiation of HFSCs into 
HF cells while concurrently inhibiting their differentiation 
into epidermal cells through the Notch/RBP-J mechanism 
[33,34]. The Notch signaling pathway additionally functions 
as a downstream pathway of Wnt/β-catenin signaling, 
activating the transcription of target genes such as hair and 
split enhancers (Hes), runt-associated transcription factors 
(Runx), and Notch inhibitory membrane proteins (Numb) [35]. 
Yet another conserved mechanism of cellular signaling, the 
Hedgehog signaling pathway, is imperative for the activation 
of β-catenin activity [36]. All these signaling pathways 
intricately interact, forming a finely tuned regulatory network 
to govern the activities of HFSCs. 

Cell-extrinsic Mechanisms

As a crucial ecological niche within the skin, HFSCs possess 
the capacity to interact with other niches, contributing to the 
maintenance of skin homeostasis and regulate hair growth, 
as illustrated in Figure 2. The normal functioning of HFSCs 
necessitates an adequate vascular supply. The circulatory 
system plays a crucial role in supporting the growth and 
differentiation of HFSCs by furnishing them with essential 
elements such as oxygen, nutrients, and various growth 
factors [37]. The lymphatic system plays a pivotal role in 
removing tissue waste and supporting immune surveillance 
for HFSCs [38]. Simultaneously, upon activation of HFSCs, 
there is a transient increase in lymphatic vessel caliber, 
accompanied by the dissociation of lymphatic capillaries in 
close proximity to HFSCs [39,40]. However, during quiescence, 
lymphatic capillaries closely associate with HFSCs [39]. Hence, 
there exist dynamic changes in the association between 
lymphatic capillaries and HFSCs. Collectively, the vasculature 
assumes a pivotal role in the health and functionality of 
HFSCs. This interaction encompasses not only the provision 
of nutrients and oxygen but also involves cell signaling, 
niche maintenance, and participation in the healing process. 
Therefore, ensuring an adequate blood supply may prove 
crucial for the maintenance of HF health and the prevention 
of hair loss.

Nerves and neurons communicating with various tissue 
stem cells, including hematopoietic stem cells [41], intestinal 
stem cells [42-44] and muscle stem cells [35,45,46], have been 
extensively documented. HFSCs are no exception to this 
phenomenon. HFSCs are not only regulated by the niche in 
wound healing through sensory nerves but are also activated 
by sympathetic nerves [35,48-50]. Similarly, HFSCs express 
neurotrophic factors to modulate their neural niche [51]. 
The regulation of HFSCs by the nervous system constitutes 
a complex network, encompassing various aspects such as 
neuroendocrine regulation, neurovascular regulation, and 
neural-immune interactions. A more profound understanding 
of these interactions is crucial for comprehending mechanisms 
underlying hair loss, advancing treatment strategies, and 
preserving overall hair health.
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The ECM, comprising components such as collagen, integrins, 
proteoglycans, and other structural macromolecules, serves as 
a tissue scaffold that offers crucial structural support. It plays 
a pivotal role in cell adhesion, migration, and cell signaling 
[52]. The mutual crosstalk between stem cells and the ECM 
represents a prominent and current research focus. The ECM 
stands as a pivotal component within the HF niche, furnishing 
essential support for the growth and differentiation requisite 
for HFSCs [14,52-54]. The ECM encompasses a diverse array 

of proteins, polysaccharides, and other biomolecules. These 
components collectively construct a microenvironment 
essential for the survival and optimal functioning of HFSCs 
[14,53-57].

All in all, the interaction between HFSCs and other skin niches 
forms an integrated regulatory network. This interaction 
occurs through various means, including the exchange of 
nutrients, exudates, signaling molecules, etc.

 

Figure 2. HFSCs with other niches during the hair growth cycle. The hair growth cycle includes Anagen, Catagen, Telogen, Exogen, and 
then it can begin a new Anagen. In different periods, the interaction of HFSCs with nerve and circulatory system is different. When the HF 
undergoes hair growth cycle, the nerve and circulatory system also make periodic changes. As the HFSC is activated, the HF enters Anagen. 
The subcutaneous vasculature structures that normally oriented horizontally and fill the vessels below the hair ula disperse and become 
more vertical. Meanwhile, angiogenesis occurs in the cutaneous vasculature, which can provide both oxygen and nutrients. In Telogen, the 
present vasculature becomes horizontal again, forming a dense vascular structure and maintaining this structure until the onset of the next 
Anagen. HF innervation and the density of cutaneous peripheral nerves increase during the growth phase and decrease during the degen-
erative phase and maintaining to next Anagen. The ECM itself is the true ecological niche of the HFSCs, and ECM from hair epithelium, the 
ECM proteins are mediators of various components in the HFSC microenvironment.
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Treatment of Hair Loss

The periodic growth of HF is orchestrated by HFSCs, which 
assume a pivotal role in the treatment of hair loss. Research 
data indicates that HFSCs can drive HF regeneration 
through interventions such as drugs, laser therapy, and cell 
transplantation.

Minoxidil initially emerged as a medication for hypertension 
in the 1970s; however, its use revealed instances of hair 
regeneration and generalized hirsutism in bald patients 
[58]. Over time, 2% and 5% formulations of minoxidil have 
been employed for the treatment of hair loss. Mori and 
Uno observed a significant reduction in the Telogen phase 
in rats treated with minoxidil compared to the untreated 
group [59]. Simultaneously, it was discovered that minoxidil 
could markedly upregulate vascular endothelial growth 
factor in dermal papillary cells, a phenomenon typically 
robustly expressed during the Anagen phase [60]. The effects 
of minoxidil can vary from person to person, with some 
individuals experiencing a significant slowdown in the hair 
loss process and promotion of new hair growth. However, not 
everyone responds in the same way, and common side effects, 
such as irritant contact dermatitis with typical symptoms of 
itching and desquamation, may occur in some individuals.

Low-level laser therapy (LLLT) is a biological intervention 
relying on low-intensity laser irradiation, employing a single 
type of non-thermal radiation with wavelengths in the red to 
near-infrared range of the electromagnetic spectrum [61]. LLLT 
is most commonly employed in clinical settings for various 
purposes, including irradiation of injured sites to promote 
wound healing, remodeling, or reduce inflammation. It is 
utilized for inducing nerve cells to relieve analgesia, reducing 
lymph node edema and inflammation, as well as promoting 
muscle relaxation and alleviating pain [62-64]. In the 1960s, 
Endre Mester discovered that a low-power ruby laser (694 
nm) enhanced hair growth in the shaved area of the back [65]. 
The introduction of LLLT marked the first demonstration of its 
beneficial effects on hair growth, opening up new avenues for 
the treatment of hair loss [66]. Subsequently, an increasing 
number of studies have revealed the efficacy of LLLT in the 
context of hair loss. In 2007 and 2011, the U.S. Food and Drug 
Administration (FDA) granted approval for LLLT as a safe 
treatment for male and female-pattern alopecia, respectively 
[67]. In 2021, Jin et al. discovered that LLLT mitigates hair loss 
through the activation of HFSCs [68]. They found that LLLT can 
stimulate the activation of quiescent HFSCs and alleviate HF 
atrophy. This is achieved through the induction of reactive 
oxygen species (ROS), which activate the PI3K/AKT/GSK-
3β signaling pathway, thereby inhibiting the proteasomal 
degradation of β-catenin in the HFSC. On the other hand, LLLT 
accelerates microvascular blood flow, leading to increased 
blood oxygen content, thereby promoting HF regeneration 
[69]. LLLT not only has the capacity to regulate the signaling 

pathways of HFSCs but also exerts an effect on the ecological 
niche of HFSCs.

Cell transplantation emerges as a therapeutic approach for 
hair loss, involving the implantation of HF or other cell sources 
into the scalp to stimulate the growth of new hair. Hair loss 
can be addressed through either the direct transplantation 
of HF or by fostering their regeneration with transplanted 
stem cells. Research findings suggest that neural stem cells 
directly regulate the HF niche, inducing core growth factors 
to promote hair regeneration through the TGF-β and BMP 
signaling pathway [70]. Despite the numerous available 
treatments for hair loss, the underlying mechanisms warrant 
further investigation.

Conclusion

The term "niche" denotes the specific position or role 
occupied by an organism for its survival and lifestyle. This 
encompasses biological functions, behaviors, adaptation 
strategies, and interactions with the surrounding environment 
and other organisms. Within the context of skin biology, 
HFSCs function as a pivotal signaling center. They are not only 
subject to regulation by a diverse array of signaling pathways 
but also engage in intricate interactions with other elements, 
forming an extensive network mediation center crucial for 
maintaining skin homeostasis.

In summary, the investigation of signaling pathways and 
the niche environment surrounding HFSCs holds promise for 
identifying effective strategies in addressing skin diseases, 
potentially serving as a target for conditions such as alopecia 
in the near future. This scholarly discourse underscores the 
potential translational impact of understanding HFSCs and 
their niche in the realm of skin health.
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