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Introduction

The intestinal epithelial cells (IECs) form a semi-permeable 
barrier that allows the absorption of nutrients and electrolytes, 
meanwhile preventing harmful external environmental 
antigens from entering the host’s internal environment, 
in order to maintain the host’s homeostasis [1]. The 
mammalian intestine accommodates a dynamic community 
of trillions of microorganisms allowing the adaptation of 
diverse saccharolytic enzymes that complement the limited 
saccharolytic diversity encoded in the mammalian genome 
[2]. Although the host-microorganisms relationship is 
symbiotic in nature, such a dense bacterial community poses 
a serious threat to the host, and opportunistic invasion of 
the host’s internal environment by gut resident bacteria can 
lead to serious pathologies such as chronic inflammation or, 

in extreme cases, bacteremia. Taking into consideration the 
huge numbers and the high diversity of gut microbiome, 
and the large surface area of the intestine, the best defense 
strategy for the host is to prevent microorganisms from 
breaching the epithelial barrier. IECs play a central role in 
maintaining the epithelial barrier through shaping physical 
and chemical layers of defense to prevent the invasion of gut 
microorganisms into the internal environment of the host 
[3,4]. However, gut bacteria have evolved evasion strategies 
to escape from these layers of defense and breach epithelial 
barrier. Remarkably, epithelial cells utilize a next layer of 
defense against the invaded pathogens through cell-intrinsic 
microbial sensors and the activation of immune responses to 
eradicate invading pathogens [5,6]. In this review, we discuss 
the adaptations of IECs to limit opportunistic invasions of 
resident microorganisms, and how the intestinal epithelium 
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minimizes the contact between luminal microbiota and the 
immune system, in order to prevent destructive immune 
responses and maintain intestinal homeostasis.

First Line of Defense: The Mucus Layer

Goblet cells, which are specialized epithelial cells, secrete 
mucin glycoproteins. These mucins are arranged into a viscous 
gel-like layer covering the epithelial surface, forming inner and 
outer mucus layers [7]. Whereas the small intestine has only one 
loose mucus layer, the large intestine displays the two mucus 
layers to defend against trillions of inhabiting gut bacteria 
[8]. Mice deficient in Muc2, a key mucin glycoprotein, show 
bacterial translocation across the mucosal barrier and develop 
spontaneous colitis [9]. In addition, probiotic microbiota, 
such as lactobacilli, enhance the intestinal epithelium barrier 
function through the stimulation of mucin production [10]. 
On the other hand, colitogenic microbiota, such as Entamoeba 
histolytica, precipitate intestinal inflammation by degrading 
the C-terminal region of mucin [11]. 

Second Line of Defense: The Apical Junctional 
Complex (APC)

Epithelial cells exhibit an anatomical structure that separates 
the internal host environment from the external environmental 
stresses [12]. This separation is partly achieved by apical 
junctional complex (APC), which ensures the impermeability 
of both commensal and pathogenic bacteria inhabiting the 
gut. The APC consists of three types of junctional proteins. 
First, tight junction proteins such as claudins, occludin, 
junctional adhesion molecules, and zonula occludens (ZO). 
Second, adherens junction proteins such as E-cadherin. Lastly, 
the desmosomes [13]. Mice deficient in occludin expressed 
morphologically intact tight junction structures but exhibited 
elevated inflammation and a defective gut barrier [14]. 
Bacteria such as Clostridium difficile and Listeria monocytogenes 
target occludin and claudin, respectively, thus weakening 
the intestinal epithelial barrier and promoting their invasion 
leading to an increase in intestine permeability [15]. Moreover, 
epithelial cells display a constant turnover cycle every 3-5 and 
5-7 days in the small and large intestines, respectively, which 
renews the epithelial barrier, and thus maintains intestinal 
homeostasis [16,17].

Third Line of Defense: Antimicrobial Peptides 
(AMPs) and Immunoglobulin A (IgA)

AMPs are secreted by gut epithelial cells and diffused 
through the mucus layer to prevent unwanted colonization 
of microbes. AMPs include defensins, cathelicidins, and C-type 
lectins, which have a wide spectrum of antibiotic activity 
[18,19]. Besides the microbicidal activity of AMPs, they have 
several other actions, like stimulating mucus secretion [20], 
expression of tight junction proteins [21], chemotaxis, cell 

proliferation, and enhancing the production of extracellular 
matrix proteins, confirming their roles in wound healing 
[22]. Defects in endogenous AMP expression and function 
have been linked with intestinal inflammation in mice. For 
example, Mice with a deficiency in Regenerating islet-derived 
protein 3 gamma (Reg IIIγ), a C-type lectin, exhibited increased 
mucosal bacterial burden and impaired spatial relationships 
between bacteria and their host tissues [23]. In addition, 
Ly6/Plaur domain-containing 8 (Lypd8) has been recently 
identified as an antimicrobial peptide, which contributes to 
the segregation of intestinal bacteria and intestinal epithelia 
in the large intestine [24]. Mice lacking Lypd8 demonstrate 
the disappearance of the bacteria-free space just above the 
epithelial layer of the colon [25]. 

IgA is secreted by plasma cells located in lamina propria. The 
secreted form of IgA (sIgA) is transcytosed across the epithelium 
to allow binding to luminal bacteria. The transcytosed IgA 
binds to bacteria on the luminal side of the epithelial barrier 
and prohibits their translocation [26]. The exact mechanisms 
by which IgA does these roles remain elusive but may include 
the ensnaring of bacteria in the mucus layer or enhancing 
fast phagocytic clearance of the pathogens that invade the 
epithelial cell barrier [27].

Fourth Line of Defense: Network of Microbial 
Sensors and Immunomodulatory Effectors

Despite the aforementioned defenses of IEC, pathogenic 
microorganisms have evolved escape strategies to escape. 
Remarkably, epithelial cells are well-equipped with intrinsic 
diverse and sophisticated regulatory networks to defend 
against the invaded pathogens. IECs utilize complex 
microbial sensors called pattern recognition receptors 
(PRRs) [28], which upon activation orchestrate the secretion 
of immunomodulatory molecules such as chemokines and 
cytokines to culminate in an appropriate immune response 
towards invading pathogens [29,30]

PRRs recognize conserved bacterial structures called 
pathogen-associated molecular patterns (PAMPs) that are not 
found in the host’s cells. Additionally, PRR recognizes danger-
associated molecular patterns (DAMPs) released from stressed 
or damaged cells [31]. PRRs comprise two main categories 
of receptors: membrane-bound toll-like receptors (TLRs), 
and intracellular nucleotide oligomerization domain (NOD)-
like receptors (NLRs). Upon microbial recognition, activation 
of PRRs activates a signaling cascade culminating in the 
expression of pro-inflammatory cytokines and antimicrobial 
mediators, and the recruitment of immune cells to aid in the 
eradication of the bacterial threat and protect the epithelium 
from pathogenic invasion [32]. Further, it has been shown that 
TLR signaling is involved in epithelial cell proliferation [33,34], 
IgA production [35], maintenance of tight junctions [36], 
and antimicrobial peptide expression which are essential for 
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maintaining a healthy epithelial barrier [37]. TLR2 activation 
efficiently maintains the tight junction-associated barrier 
assembly in intestinal epithelial cells against stress-induced 
damage and inhibits mucosal inflammation [38]. High 
expression levels of TLR3 in intestinal epithelial cells correlate 
with resistance against rotavirus infection [39]. Mice that 
have deficiencies either in Tlr4 or Tlr5 exhibit impaired innate 
immune responses and are more vulnerable to dextran sodium 
sulfate (DSS)-induced colitis [40,41]. The best-characterized 
NLRs are NOD1 and NOD2, both of which identify PAMPs by 
leucine-rich repeats (LRRs) at the C-terminus like TLRs [42]. 
In accordance with their intracellular localization, NODs 
are specific for the detection of pathogens that invade the 
intestinal epithelial cells such as Shigella and Salmonella [43]. 
Consistently, Nod2-deficient mice exhibited severe colitis with 
increased bacterial invasion [44].

IECs present luminal antigens to intraepithelial lymphocytes 
(IELs) to modulate the adaptive immune system [45]. The 
bidirectional interactions between IELs and IECs are important 
to maintain immune homeostasis at the intestinal barrier [46]. 

Following bacterial invasion, IECs secrete chemokines such 
as CXCL8, CXCL1, CXCL3, and CXCL5 that recruit neutrophils. 
In turn, neutrophils secrete interleukin-22 (IL-22), which 
stimulates the expression of antimicrobial peptides by the 
colon epithelium and protects the epithelium from chemically 
induced damage [47,48]. Besides, IECs recruit dendritic cells 
(DCs) and T helper 17 (Th17) cells by secreting CCL20. In turn, 
Th17 secretes IL-17 which increases intestinal epithelial cell 
proliferation and reduces barrier permeability [49]. In addition, 
DCs cells secrete IL-28A, which induces intestinal epithelial 
proliferation [50].

Conclusion and Future Remarks

IECs are key players in shaping and maintaining intestinal 
homeostasis, which is critical for the host’s metabolism and 
survival. IECs utilize diverse and complex networks to shape 
physical and chemical layers of defense against opportunistic 
gut microbiome invasions. Additionally, the cross-talk 
between IEC and the immune compartment strengthens the 
host defense against possible pathogenic invasions from gut 

 

 
 

Figure. 1. Structure of the Intestinal epithelial barrier: The intestinal epithelium is equipped with three layers of defense, chemical, 
physical, and cellular, which ensure the spatial segregation between the luminal microbes and the underlying immune system. The chemical 
barrier is the first line of defense formed by a double mucus layer including secreted antimicrobial peptides and IgA. Epithelial cells ensure 
microbes do not enter our tissues by forming a continuous, almost impregnable physical barrier that surrounds the gut lumen. This barrier 
is maintained by Junctional complexes between the cells formed by the tight proteins (zonula occludens (ZO), claudin, occludin), adherens 
junctions (E-cadherin), and desmosomes. The third layer of defense is the basal layer beneath the epithelial cells is the lamina propria, which 
is the immune barrier composed of gut-associated lymphocytes.
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microbiome. It is thus of particular interest to understand 
how the IECs regulatory signaling networks operate, and how 
these sophisticated pathways shape cell-intrinsic and cell-
cell responses. Harnessing such knowledge will eventually 
offer more opportunities for better and more specific 
therapies targeting IECs to strengthen the intestinal barrier 
and/or induce immune tolerance with minimal side effects. 
Besides, nutritional support to enrich certain microbiome and 
promote a gut anti-inflammatory environment may prevent 
provoking detrimental immune response. Also, stem cell 
therapies to regenerate damaged IECs may be potentially 
helpful for treating severe cases of intestinal inflammation. Of 
note, choosing the best therapeutic strategy will likely depend 
on the comprehensive assessment of the etiology and the 
severity of intestinal inflammation. 
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