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Abstract 

Many disease processes result from disruption of physiologic cell signaling pathways. Cancer often develops from the loss of cell cycle 
regulation, while inflammatory disease results from dysregulated immune activity. Likewise, many microbial infections avoid immune 
clearance by interfering with cellular antimicrobial pathways. Retinoic Acid (RA) is a dynamic compound, derived from vitamin A, that can 
regulate various signaling pathways. RA induced cell signaling has proven beneficial against different diseases, such as Acute Promyelocytic 
Leukemia (APL) and psoriasis. Against APL, RA induces cellular differentiation in cancer cells to restore proper function. In psoriasis, RA 
downregulates inflammatory pathways, such as NF-κB. RA’s anti-inflammatory properties have also been examined in the context of 
sepsis, where recent animal studies have shown positive benefits. Along with regulating inflammation, RA exhibits indirect antimicrobial 
properties. Unlike conventional antimicrobials which target pathogens directly, RA functions as a host-directed therapy (HDT), promoting 
cell antimicrobial defenses. Recent studies examining RA have shown that it can improve macrophage clearance of microbial pathogens and 
stimulate the antiviral type-I interferon (IFN) response. RA’s effectiveness has been demonstrated against clinically relevant pathogens, such 
as Mycobacterium tuberculosis, Aspergillus fumigatus, and Measles virus. In this review, the therapeutic potential of RA to treat various diseases 
by regulating cell signaling pathways will be explored.
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Melanoma Differentiation Associated gene 5; MxA: Myxovirus resistance protein 1; NF-κB: Nuclear Factor κ B; PGE-2: Prostaglandin E-2; PML: 
Promyelocytic Leukemia protein; PRR: Pattern Recognition Receptor; RA: Retinoic Acid; RALDH: Retinal Dehydrogenase; RAR: Retinoic Acid 
Receptor; RARE: Retinoic Acid Response Element; RBP: Retinol Binding Protein; RIG-I: Retinoic Acid Inducible Gene I; RXR: Retinoid X Receptor; 
SARS-COV-2: Severe Acute Respiratory Syndrome Coronavirus 2; TBK-1: TANK-binding Kinase 1; TNF-α: Tumor Necrosis Factor α

Introduction to Retinoic Acid

Vitamins are essential nutrients that are required for biological 
processes, but are unable to be synthesized by the human body 
in large amounts [1]. In general, vitamins are classified into 
two groups based on their chemical properties: water-soluble 
(e.g., vitamin B1, B2, B3, etc.) and fat-soluble (e.g., vitamin A, C, 
D, etc.) [1]. Vitamin A is a critical fat-soluble nutrient that plays 

a key role in signaling pathways involved in fetal development, 
tissue differentiation, and immune regulation [2-4]. It is also a 
major component in the visual system, where it interacts with 
opsin proteins to induce visual activity [5]. Vitamin A’s effect 
on cellular signaling pathways results from its function as a 
transcription factor for different genes [2-4]. For example, 
vitamin A regulates fetal development by promoting the 
expression of homeobox genes, which are responsible for 
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embryogenesis [4]. Because of its extensive physiological 
activity, vitamin A deficiency results in widespread symptoms 
[6]. Common symptoms of vitamin A deficiency include night 
blindness, mucosal membrane breakdown, and increased risk 
of infection (i.e., immune dysfunction) [6].

Like other essential nutrients, vitamin A can’t be synthesized 
and must be acquired from the diet [3, 7]. Fortunately, vitamin 
A is present in multiple dietary sources, such as animal (e.g., 
meat, milk, dairy products, eggs, etc.) and plant products 
(e.g., carrots, spinach, tomatoes, oranges, etc.) [7]. Unlike 
animal products which contain preformed vitamin A (Retinol), 
plant products produce provitamin A carotenoids, such as 
β-carotene [7,8]. The human body is able to make use of both 
Retinol and provitamin A carotenoids by metabolizing them 
into retinoic acid (RA) for cellular use [8].

The conversion of vitamin A into its active form (i.e., RA) occurs 
in a stepwise process (Figure 1). First, retinol and β-carotene 
are absorbed by intestinal epithelial cells into circulation [7,9]. 
In serum, Retinol and β-carotene are transported via retinol 
binding protein (RBP) and chylomicrons, respectively [3,8]. 
Circulating retinol and β-carotene are then taken up by liver 

cells, which contain the highest concentration of vitamin A in 
the human body [3,7]. Within liver cells, retinol is converted to 
retinal by alcohol dehydrogenase (ADH) [3,7,10]. β-carotene is 
also converted to retinal, via the activity of β-carotene-15,15'-
dioxygenase (BCO1) [8]. Lastly, retinal gets metabolized into 
RA by retinal dehydrogenase (RALDH) [3,7,10]. The primary 
forms of RA include all-trans RA (ATRA), 9-cis RA, and 13-cis 
RA [3,9]. RA binds to cellular RA binding protein (CRABP) and 
is transported into the nucleus, where it activates RA specific 
transcription factors [3,7,10]. Of these three metabolites, ATRA 
demonstrates the greatest transcriptional activity, capable 
of binding to RA receptors (RARs) within the nucleus [11,12]. 
9-cis RA predominantly binds to retinoid X receptors (RXRs) 
however, it can also interact with RARs [11,12]. The binding 
activity of 13-cis RA is unknown [11,12]. 

Both RAR and RXRs consist of three isoforms: α, β, and γ [12]. 
RAR is typically bound to RXR as a heterodimer (i.e., RAR/RXR), 
while RXR is usually present as an inactive tetramer [11-13]. RAR/
RXR is bound to RA response elements (RAREs) in the genome 
[12]. Without RA present, RAR/RXR represses gene expression 
by recruiting corepressors that promote histone deacetylase 
complexes [11,12]. With RA present, RAR/RXR induces gene 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. ATRA induced differentiation in APL. ATRA binding to PML-RARα allows for RARE gene expression, preventing cancer 

induced recruitment of gene silencing proteins (e.g., Corepressors and Histone modifying proteins). Created with 

BioRender.com. 

Figure 1. Summary of vitamin A metabolism. Retinol and β-carotene get taken up by the cell and metabolized into RA, the active form of 
vitamin A. RA is then transported into the nucleus by CRABP, where it activates the nuclear transcription factors RAR and RXR. Activation of 
RAR and RXR leads to RARE gene expression. Created with BioRender.com.
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expression by recruiting coactivators that promote histone 
acetyl transferase activity [11,12]. RA induced RAR/RXR 
activation results in the expression of RAREs, which encompass 
numerous genes involved in different signaling pathways 
(Figure 1) [11,12,14]. For instance, RAREs include genes that 
regulate fetal development (e.g., Hoxa1, Hoxa4, etc.), immune 
function (e.g., IL2RA, Socs3, Tgfbr1 etc.), cell growth (e.g., MYC, 
MYCN, etc.), and RA activity (e.g., RARA, RARB, etc.) (Table 1) 
[14, 15]. The transcriptional activity of RXR is less understood 
than that of RAR/RXR. However, previous studies have shown 
that RA induces RXR binding to other transcription factors to 
promote their activity [13,16]. Noticeable transcription factors 
that are promoted by RXR include thyroid hormone receptor 
and peroxisome proliferator-activated receptor [13]. Because 
the effect of RA on RARE expression is more clearly established, 
the review will focus on the activity of RAR/RXR. 

ATRA Induced Cell Signaling as a Disease Treatment

Therapeutic rationale

Due to its effect on different cellular signaling pathways, 
ATRA has been extensively studied as a potential therapeutic 
for diseases resulting from dysregulated signaling pathways. 
In oncology, ATRA is predominantly used to treat acute 
promyelocytic leukemia (APL), where it promotes cellular 
differentiation and induces apoptosis in cancer cells [11,17-
19]. During APL, promyelocytes have lost the ability to 
differentiate into mature granulocytes, so they overcrowd 
the bone marrow and disrupt other blood cells (e.g., platelets, 
red blood cells, etc.) [17-19]. Because of its effectiveness in 
treating APL, ATRA is listed by the World Health Organization 
as an essential medication for healthcare systems [20]. RA 
derivatives have also shown positive benefits in the context 
of melanoma, hepatoma, lung, breast, and prostate cancer 
[21,22]. In dermatology, ATRA is used to treat severe forms 

of acne and inflammatory skin conditions, such as psoriasis 
[11,23]. ATRA can reduce inflammation by upregulating 
anti-inflammatory signaling in immune cells [3,11,23]. Its 
anti-inflammatory properties have also been studied in the 
context of sepsis, where it can downregulate proinflammatory 
signaling pathways (i.e., NF-κB pathway) [3,24-26].

Although ATRA has predominantly been studied in the 
context of cancer and inflammatory disease, recent studies 
have also highlighted its impact on innate immune pathways. 
Unlike conventional antimicrobials that directly target their 
associated pathogen, ATRA can enhance immune pathways to 
improve bacterial and viral clearance [3,27]. This therapeutic 
strategy, known as host-directed therapy (HDT), has gained 
interest as an additional treatment option, especially against 
antibiotic resistant bacteria [28,29]. Resulting in approximately 
1.27 million deaths globally in 2019, antibiotic resistance is a 
significant health problem requiring renewed focus and novel 
therapeutics [30,31]. Likewise, the emergence of novel viral 
pathogens necessitates an expansion of antiviral treatments 
[32]. 

ATRA induction of differentiation in cancer

Cancer is a multifaceted disease process, encompassing 
different pathologies that can affect every organ system. 
Although the causes of cancer are numerous, cancer cells 
generally exhibit dysregulated cell signaling that results in 
excessive proliferation, loss of differentiation, and metastasis 
[33]. Loss of regular signaling pathways often occurs due to 
mutations in proto-oncogenes or tumor suppressor genes 
[33-35]. Proto-oncogenes regulate cell growth, so when they 
become mutated (i.e., oncogenes) they can induce abnormal 
proliferation [34]. Tumor suppressor genes maintain normal 
cellular signaling by regulating cell cycle progression and DNA 
repair pathways [35].

Table 1. Listed RARE Gene Activity.

Gene Full Name Function

Hoxa1 Homeobox A1
Regulates cellular differentiation

Hoxa4 Homeobox A4

IL2RA Interleukin 2 receptor subunit α Forms interleukin 2 receptor, a key mediator of inflammation

MYC MYC proto-oncogene
Regulates cell cycle progression and apoptosis

MYCN MYCN proto-oncogene 

RARA Retinoic acid receptor α
Regulates expression of RAREs

RARB Retinoic acid receptor β

Socs3 Suppressor of cytokine signaling 3 Promotes anti-inflammatory activity

Tgfbr1 Transforming growth factor β receptor 1 Forms transforming growth factor β receptor, which promotes 
anti-inflammatory activity
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APL is a blood cancer caused by abnormal promyelocytes 
[36,37]. During erythropoiesis, promyelocytes develop in bone 
marrow and differentiate into granulocytes (e.g., neutrophils, 
eosinophils, basophils) [38,39]. In APL, promyelocytes are 
unable to differentiate, and instead proliferate and crowd 
out normal developing blood cells (e.g., platelets, red blood 
cells, etc.) [36,37]. Clinically, this manifests as abnormal white 
blood cell counts (i.e., promyelocyte proliferation), decreased 
platelets, and bleeding [36]. Without treatment APL is a fatal 
disease, with death resulting from hemorrhage due to reduced 
platelet levels [36]. ATRA treatment has revolutionized APL 
care, producing response rates of 90% [36,40]. Unfortunately, 
the high response rate of ATRA monotherapy is tempered by 
its low remission rate, with 20-30% of patients experiencing 
APL recurrence [36]. To combat high recurrence rates, current 
APL treatments utilize combination therapies, relying on 
ATRA plus other chemotherapy agents (e.g., arsenic trioxide, 
idarubicin, etc.). Combination therapies drastically improve 
APL survival by demonstrating complete remission and 5 year 
survival rates of 91% and 95%, respectively [36]. 

ATRA treats APL by restoring cell signaling, thus enabling 
proper gene expression and cellular differentiation. The loss of 
cellular differentiation in APL is due to a balanced translocation 
between chromosomes 15 and 17 [36,37]. This results in 
the formation of a fusion protein involving Promyelocytic 
Leukemia protein and RARα (PML-RARα) [36,37]. Under 
physiologic conditions, PML functions as a tumor suppressor 

protein, regulating cell cycle progression and DNA repair 
[41,42]. However, when fused to RARα it disrupts normal gene 
expression by recruiting corepressors, histone modifying 
proteins, and by blocking RARE [37,43]. ATRA interferes with 
PML-RARα by directly binding to RARα [43]. After binding ATRA, 
PML-RARα undergoes conformational changes that prevent it 
from blocking RAREs or recruiting corepressors and histone 
modifying proteins [43]. Without interference from PML-RARα, 
normal cell signaling is restored and the promyelocyte can 
complete the differentiation process (Figure 2). 

The effectiveness of ATRA’s antineoplastic properties during 
APL has led to increased study. Similar to ATRA, RA derivatives 
are also effective against different blood cancers. For example, 
Bexarotene is an RA derivative approved by US FDA for the 
treatment of cutaneous T cell lymphoma [7,22,44]. Positive 
findings have also been encountered by in vitro studies, where 
RA derivatives were shown to promote cellular differentiation 
and disrupt proliferation in various cancer cell-lines (e.g., 
lung, breast, etc.) [7,22,45]. However, these studies have been 
unable to translate into the clinic, with experiments failing 
to demonstrate a survival benefit [22,45]. The discrepancy 
between in vitro and clinical studies demonstrates the 
difficulty of modeling cancer, which can recruit noncancerous 
cells and adapt to monotherapies. Further study examining 
ATRA in combination with other therapies (e.g., chemotherapy, 
immunotherapy, etc.) may better elucidate its effectiveness 
against cancer.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
Figure 2. ATRA induced differentiation in APL. ATRA binding to PML-RARα allows for RARE gene expression, preventing cancer induced 
recruitment of gene silencing proteins (e.g., Corepressors and histone modifying proteins). Created with BioRender.com.



 
 Franco JH, Pan ZK. Retinoic Acid Induced Cell Signaling as a Counter Against Disease. J Cell Signal. 2023;4(4):187-
198.

J Cell Signal. 2023
Volume 4, Issue 4 191

RA has exhibited successful use as a chemo-preventative 
agent [46]. Unlike chemotherapy agents that directly induce 
cancer cell death, chemo-preventative agents disrupt 
carcinogenesis to halt cancer formation [46]. As a chemo-
preventative agent, ATRA can reduce cancer progression of 
oral leukoplakia, which is a potentially malignant disorder [47]. 
Likewise, 13-cis RA can reduce tumor formation in patients 
with xeroderma pigmentosum, who exhibit increased rates 
of non-melanoma skin cancer due to nonfunctional DNA 
repair proteins [48]. In this context, ATRA’s effect is explained 
by its capacity to upregulate tumor suppressor genes, such as 
p53, and facilitate activation of apoptotic pathways [49,50]. 
ATRA’s antineoplastic properties have been applied with 
mixed results, necessitating further research to determine the 
conditions most susceptible to treatment.

ATRA downregulation of inflammatory disease processes

Inflammatory disease is a complex pathologic process with 
diverse clinical presentations. Depending on the degree of 
inflammation, inflammatory disease can affect a single organ 
system (e.g., psoriasis, atherosclerosis, etc.) or act systemically, 
such as in sepsis [51]. Regardless of severity, inflammatory 
processes are mediated by the release of proinflammatory 
cytokines (e.g., TNFα, IL-6, etc.) [51,52]. These cytokines are 
produced in response to activation of inflammatory signaling 
pathways, such as the NF-κB or MAPK pathway [51-54]. During 
inflammatory disease, these pathways become dysregulated 
and result in excessive inflammation. 

An inflammatory disease characterized by chronic 
inflammation in the skin is psoriasis [55]. Psoriasis presents 
clinically with scaly red plaques that are defined by epidermal 
proliferation and immune cell infiltration [55-57]. Treatments 
for psoriasis include anti-inflammatory therapeutics (e.g., 
infliximab, utekinumab, etc.) and retinoids (e.g., acitretin, 
tazarotene, etc.) [56,57]. Retinoids improve psoriasis symptoms 
by reducing epidermal proliferation and downregulating 
inflammatory cytokines [56,57]. Specifically, retinoid induced 
activation of RARE leads to decreased IL-6 expression [57]. 

Another chronic inflammatory condition is atherosclerosis, 
which is defined by cholesterol buildup that induces 
inflammation in the vessel wall [58]. This inflammation results 
in vascular dysfunction that can lead to clot formation, thus 
disrupting blood flow to downstream organs [58]. Unlike 
psoriasis, atherosclerosis treatment focuses on limiting 
cholesterol accumulation and reducing clotting risk. ATRA’s 
efficacy in treating atherosclerosis is currently under 
investigation [59]. However, its anti-inflammatory effect on 
mediators of atherosclerosis, such as macrophages and Tregs, 
highlights a possibility to reduce disease progression [58,59]. 
RA’s anti-inflammatory effect has been extensively studied, with 
in vitro studies illustrating its cell type dependent activity. In 
macrophages RA decreases TNFα, IL-12, and PGE-2 secretion by 
interfering with NF-κB activity [25,26,60,61]. This interference 
has been proposed to occur via direct binding by RXR [26,61] 
(Figure 3). ATRA also stimulates Treg cell expansion, which is a 
major source of the anti-inflammatory cytokine IL-10 [62]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 3. ATRA’s anti-inflammatory effect. ATRA reduces inflammation by upregulating anti-inflammatory genes and disrupting NF-κB 
activity. Created with BioRender.com.
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Because of its widespread influence on immune function, RA 
has been examined as a potential treatment for sepsis [26,63]. 
Sepsis is a fatal disease characterized as a dysfunctional host 
response towards an infection with risk of organ failure [63-65]. 
Regardless of etiology, many of the symptoms associated with 
sepsis (e.g., fever, excessive clotting, hypotension) result from 
excessive inflammation [63]. These inflammatory processes 
are mediated by a dysregulated release of proinflammatory 
cytokines, such as TNFα, IL-6, and IL-8 [63,66,67]. Current 
treatments with antimicrobials and corticosteroids (i.e., anti-
inflammatory agent) have improved survival rates from sepsis 
[65,68]. However, mortality rates still range from 15 to 20%, 
and can increase to between 20 and 50% in cases of septic 
shock [66,69]. Its severe clinical presentation leads to over 5 
million deaths globally [67].

With mortality rates from sepsis still high, ATRA has 
been examined as a potential treatment option. In 
lipopolysaccharide induced sepsis animal models, ATRA 
downregulates NF-κB activation and increases survival rates 
[24,26]. Similar results were seen in models of polymicrobial 
sepsis, where ATRA increased survival and was associated with 
decreased proinflammatory cytokine expression [26]. Clinical 
studies are needed to confirm RA’s potential benefit during 
sepsis; however, previous work supports a promising outlook 
for its use.

ATRA activation of antimicrobial defense

Under typical conditions, the immune system is effective 
at clearing microbial pathogens. Activation of the innate 
immune system is facilitated by cellular pattern recognition 
receptors (PRRs) that recognize invading pathogens and 
trigger an inflammatory response [63,70]. The release of 
proinflammatory cytokines leads to leukocyte infiltration, with 
neutrophils and macrophages responsible for eliminating 
microbes via phagocytosis [70]. If the invading pathogen was 
previously encountered, then cells of the adaptive immune 
response (i.e., T and B cells) also contribute to pathogen 
clearance [70].

Unfortunately, many pathogens possess tools that allow 
them to disrupt immune cell signaling processes. A common 
strategy among different bacteria is to interrupt phagocytosis, 
either by evading cellular uptake or by inhibiting 
phagolysosome activity [70-72]. Examples of bacteria that can 
disrupt phagocytosis include clinically significant pathogens, 
such as Mycobacterium tuberculosis, Streptococcus pyogenes, 
and Neisseria gonorrhoeae [72]. Because phagocytosis is the 
primary mechanism by which bacteria are eliminated from 
tissues, therapies that improve cellular phagocytic pathways 
can improve bacterial clearance [73,74]. In vitro studies of 
rodent derived macrophages have shown that ATRA increases 
phagocytic activity [27,75,76]. 

When applied to human HL60 cells (i.e., promyelocyte 

cell-line), both ATRA and dimethyl sulfoxide induce cellular 
differentiation into neutrophils [77]. However, only ATRA 
differentiated neutrophils exhibit increased phagocytic 
activity against bacteria, such as N. gonorrhoeae, Escherichia 
coli, and S. pyogenes [78,79]. Increased phagocytosis was 
associated with upregulated expression of carcinoembryonic 
antigen-related cell adhesion molecule 1 (CEACAM1), or 
CD66a [78]. CEACAM1 is a multifaceted membrane receptor 
that facilitates extracellular signal transduction to regulate 
different cellular functions (e.g., motility, proliferation, 
apoptosis, etc.) [80]. Important for immune function, CEACAM1 
promotes monocyte survival and neutrophil function [80,81]. 
In neutrophils, CEACAM1 acts as a gram-negative bacterial 
receptor and promotes phagocytosis, especially against N. 
gonorrhoeae [80,82-84].

Along with facilitating leukocyte activity, ATRA can enhance 
antimicrobial defense in skin tissue. As the body’s primary 
defense against infection, skin tissue protects against 
pathogen invasion by acting as a barrier and by producing 
antimicrobial proteins (AMPs) [85]. One notable AMP is 
cathelicidin, which is a bactericidal compound that disrupts 
bacterial membranes and facilitates leukocyte recruitment 
[85-87]. Cathelicidin is encoded by the human CAMP gene 
(i.e., CRAMP gene in mice) and is secreted by keratinocytes, 
sebocytes, adipocytes, neutrophils, mast cells, and dendritic 
cells [86]. In mouse Staphylococcus aureus infection models, 
cathelicidin secretion by dermal adipocytes was shown to 
be crucial for limiting bacterial invasion [85,86,88]. When 
administered ATRA, preadipocytes exhibited increased 
cathelicidin secretion that reduced S. aureus growth [89]. 

ATRA’s antibacterial properties against M. tuberculosis (i.e., 
causative agent of tuberculosis) have been extensively 
studied and include different mechanisms of action [27,28]. 
HDTs against M. tuberculosis are especially important because 
of its increasing rate of antibiotic resistance [30,90]. Unlike 
other bacterial infections, Tuberculosis requires a monthslong 
multi-drug regimen (e.g., rifampicin, isoniazid, pyrazinamide, 
and ethambutol) for successful treatment [90]. With growing 
resistance to front-line antibiotics, ATRA’s antimicrobial effect 
against M. tuberculosis has received the most attention. 
In macrophages, ATRA improves M. tuberculosis clearance 
by promoting autophagy of engulfed bacteria [27,91,92]. 
Improved autophagy is crucial for M. tuberculosis clearance 
since it can survive inside macrophages by disrupting 
phagolysosome formation [72]. ATRA’s effect on macrophage 
autophagy stems from its activation of TANK-binding kinase 
1 (TBK1), which localizes engulfed M. tuberculosis with 
autophagosomes [92,93]. Although TBK1 regulates the antiviral 
response, M. tuberculosis infection stimulates intracellular 
DNA PRRs that initiate an inflammatory immune response 
[93,94] (Figure 4). In monocytes, ATRA induces clearance by 
downregulating total cholesterol and increasing lysosomal 
acidification, which occurs in response to upregulation of 
NPC2 gene expression [95].
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The efficacy of ATRA as an HDT for tuberculosis is currently 
under investigation. In vivo studies of tuberculosis in rats 
have shown that ATRA treatment reduces disease severity 
and decreases M. tuberculosis growth [96]. Clinical studies 
examining vitamin A supplementation in tuberculosis 
patients have shown no benefit during early disease course 
[97]. However, treatments using active metabolites of vitamin 
A, such as ATRA, have not yet been tested during tuberculosis 
infection. 

ATRA upregulation of antiviral response 

The type-I Interferon (IFN) response is the innate immune 
system’s primary antiviral defense. Recognition of viral 
antigens by intracellular PRRs leads to IFN regulatory factor 
3 (IRF3) activation [94,98]. IRF3 then induces IFNβ secretion, 
which stimulates antiviral gene expression in an autocrine 
and paracrine manner [94,98]. IFNβ promotes downstream 
activation of IRF9, which induces expression of over 300 
antiviral proteins, such as IFN-induced tetratricopeptide 
repeat protein (IFIT), Myxovirus resistance protein 1 (MxA), 
and IFN-inducible transmembrane protein (IFITM) [94,99-101]. 
These proteins provide a potent antiviral defense, capable of 
interfering with each stage of the viral replication cycle (i.e., 
entry, translation, replication, and egress) [100,101]. 

Like other pathogens, viruses have developed effective 
strategies for disrupting immune signaling pathways. A 
prevalent technique during viral infection is to interrupt 
activation of the type-I IFN response [102]. Viral proteins 
can shield the viral genome from PRR detection or inhibit 
downstream signaling proteins. For instance, measles virus 
delays the type-I IFN response by inactivating intracellular 
PRRs, such as RA inducible gene I (RIG-I) and Melanoma 
differentiation associated gene 5 (MDA5) [102,103]. Other 

clinically important viruses, such as SARS coronavirus 2 (SARS-
CoV-2) and influenza A virus, disrupt downstream signaling by 
inhibiting IRF3 activation or IFNβ receptor activity [102,104-
106]. 

Whereas clinicians have a large array of antibiotics to treat 
bacterial infections, their repertoire of antivirals is much 
smaller in comparison. To complement the antiviral treatment 
regimen, different HDTs that can promote the type-I IFN 
response have been investigated [28]. Chief amongst them 
is ATRA, which can induce protection against different viral 
pathogens in vitro (e.g., measles, mumps, hepatitis C virus, 
etc.) [3,107-109]. Although not clinically used as an antiviral 
therapeutic, vitamin A does improve survival rates in pediatric 
patients (<2yr old) diagnosed with measles [110]. 

ATRA’s antiviral effect stems from its capacity to upregulate 
upstream mediators of the type-I IFN response. ATRA treatment 
increases expression of RIG-I, IFNβ, IFNβ receptor, IRF1, and 
antiviral proteins [107-109] (Figure 5). As a PRR against viral 
RNA, increased RIG-I expression can improve detection against 
RNA viruses, such as measles or SARS-CoV-2 [107,111,112]. 
IRF1 is not classically associated with the antiviral response; 
however, it can facilitate activation of IRF3 [113,114]. As the 
main driver of IFNβ secretion, IRF3 activation is crucial for 
propagating the type-I IFN response. Recent studies have 
also shown that ATRA exhibits direct antiviral activity, capable 
of inhibiting reverse transcriptase and 3C-like protease in 
human immunodeficiency virus and SARS-CoV-2, respectively 
[115,116]. Further research of ATRA’s antiviral properties is 
required to validate its efficacy in in vivo systems. Likewise, 
studies illustrating ATRA’s limited effectiveness against H9N2 
influenza virus highlight the need to determine which specific 
viral pathogens are susceptible to ATRA treatment [117]. 

 

 

 

 

 

 

 

 

 

 

  Figure 4. ATRA’s antibacterial properties. ATRA upregulates cellular antibacterial pathways through various mechanisms: improving 
phagocytosis, facilitating autophagy, and promoting Cathilicidin secretion. Created with BioRender.com.
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Challenges of ATRA as a disease treatment

Unlike other novel therapeutics, RA and its derivatives have 
a long history of clinical use against various diseases (e.g., 
acne vulgaris, psoriasis, APL, etc.) [118]. RA’s effectiveness 
stems from its capacity to correct dysregulated cellular 
signaling pathways. However, its activity in multiple signaling 
pathways carries a significant risk of side effects, especially 
in pregnant women [1,119,120]. Common side effects of 
RA treatment include skin irritation and dryness [119,120]. 
The skin manifestations are due to RA’s effect on cellular 
differentiation, with RA inducing early maturation of skin cells 
[119,120]. Acute liver injury is an uncommon side effect of RA 
treatment, which usually presents with a transient elevation in 
liver enzymes [1]. 

The most significant side effect of RA treatment is 
fetal malformation during pregnancy [1,119,120]. RA’s 
characterization as a teratogen stem from its regulatory role 
during fetal development [1,4]. The addition of RA treatment 
during pregnancy alters normal fetal limb development and 
results in numerous malformations. Because it’s a teratogen, RA 
is never given during pregnancy. In women who require long 
term treatment with RA, such as in psoriasis, contraceptives 
are prescribed to reduce the risk of pregnancy. Also, topical RA 
therapeutics may be used because they act locally and are less 
likely to be absorbed systemically [120].

Conclusions

RA is a dynamic compound that is capable of inducing various 
cell signaling pathways. In APL, ATRA functions as an effective 
anti-cancer therapy by inducing cellular differentiation [36,40]. 
This process reduces cancer cell proliferation and promotes 
normal maturation. Its capacity to induce physiologic 
differentiation has been studied in different cancer cell-
lines, with clinical benefits being seen against cutaneous T 
cell Lymphoma [44]. RA also exhibits an anti-inflammatory 
effect, which is used to treat psoriasis [56]. The ability of RA 
to downregulate inflammatory pathways, such as NF-κB, has 
highlighted its potential as a possible sepsis treatment [63]. 
Although clinical studies are needed to validate RA’s efficacy 
as a sepsis treatment, recent animal studies have illustrated its 
ability to improve sepsis survival rates [26].

The growing risk of antibiotic resistant disease and novel 
viral infection necessitates new therapeutic approaches. With 
decreasing numbers of approved antimicrobial treatments, 
HDTs have gained increasing importance as an alternative 
avenue for pharmaceutical research. Chief among them 
is ATRA, which can induce host antimicrobial pathways. 
Against bacterial pathogens, ATRA promotes phagocytosis, 
autophagy, cell survival, and AMP secretion (i.e., cathelicidin) 
[75,89,92]. In vitro studies with ATRA demonstrate that it 
improves clearance of clinically important pathogens, such 

 

  

Figure 5. ATRA’s antiviral effect. ATRA confers protection against viral infections by upregulating the type-I IFN response. Specifically, ATRA 
increases IFNβ, IFNβ receptor, and antiviral protein expression. Created with BioRender.com. 
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as N. gonorrhoeae, S. aureus, and M. tuberculosis [78,89,91]. 
This effect is also seen against fungal pathogens, with ATRA 
stimulated macrophages exhibiting increased phagocytosis 
against Aspergillus fumigatus and Pneumocystis [121-123]. 
Against viral pathogens, ATRA upregulates the host type-I IFN 
response to promote viral clearance (e.g., measles, mumps, 
and hepatitis C virus) [107-109]. Taken together, RA’s capacity 
to alter cell signaling in different diseases has shown positive 
benefits that may be applicable to other pathologies.
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