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Commentary

The ability of mobile genetic elements to transfer drug 
resistance between bacteria can cause the rapid establishment 
of multi-drug resistance (MDR) [1,2], and human infection 
caused by multi-resistant, rather than susceptible organisms 
increases the likelihood of death [3]. Such antibiotic resistance 
will be the cause of millions of premature deaths and the loss 
of millions of pounds to the global economy [4]. 

Nosocomial strains of Staphylococcus pyogenes (S. pyogenes) 
resistant to penicillin were reported in 1947 with a mixture of 
resistant and sensitive strains in the same patient [5]. Within a 
decade, 70% of infections in one hospital were resistant to at 
least two antibiotics, however, a policy for prescribing them 
facilitated susceptibility to penicillin in 50% within a year, 
cutting prevalence of infection by a third [6]. From this it can 
be surmised that in a third of patients, antibiotic-susceptible S. 
pyogenes persisted following treatment. 

The innate immune system of humans relies on pattern 
recognition receptors (PRRs) recognising endogenous and 
exogenous molecular patterns related to pathogens [7]. 
Toll-like receptors (TLR) function as transmembrane PRRs 
and release inflammatory cytokines, interferons (IFNs), and 
antimicrobial peptides (AMPs) on engagement. Excessive 

signalling of TLR4s plays a significant role in Sepsis, proven 
when TLR4 knock-out mice were unaffected by lethal doses of 
Lipopolysaccharides (LPS) [8,9]. 

The term ‘inflammasome’ describes an intracellular 
cytoplasmic multiprotein complex with a pathogen 
recognition receptor [10] including NOD-like Receptors (NLRs) 
and pyrins which are specifically triggered by ligands. The 
canonical inflammasome is the part of the intracellular innate 
immunity that was observed first. It comprised the formation 
of pores in the cell membrane, followed by the release 
of caspase 1, then IL-1β and pro-IL18. The non-canonical 
inflammasome releases Caspase 4 and 5 which act as both 
sensor to pathogens, and effector in the release of IL-1β, IL-18 
and events of pyropoptosis. Another non-canonical pathway 
has been observed in mice and uses Caspase 11 on exposure 
to LPS and other toxins [11-13]. 

Minimum Inhibitory Concentration (MIC) defines levels 
of susceptibility or resistance of specific bacterial strains to 
treatment [14]. More specifically, it is the lowest concentration 
of an antimicrobial (mg/ml) which prevents growth of a test 
strain of an organism in vitro. The antibiotic resistance status 
and MICS of a range of microbes can be found on the EUCAST 
website [15]. The technique comprises the distribution 
of a specific antibiotic over a petridish and the seeding 
of a bacterial species on the right-hand side; the leftward 
proliferation of the microbe suggests it has some resistance to 
the drug concentration present.  

The selective serotonin reuptake inhibitors (SSRIs) have an 
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antibacterial effect when used alone [16]. Additionally, the 
innate bacterial efflux pumps that can prematurely decrease 
the intracellular concentration of antibiotics, are blocked  by 
efflux pump inhibitors (EPI’s) like Fluoxetine [17], allowing 
the medicine to act for longer. However, augmentation of 
antibiotics by this particular drug depends heavily on dose 
and regimen [18]. 

Proteus mirabilis is frequently found in catheter associated 
urinary tract infection (CAUTI) and is associated with serious 
clinical complications given its ability to form biofilms on even 
state-of-the-art indwelling catheters [18]. In vitro, a MIC of 
0.26 mg/ml of fluoxetine was found for P. miribilis B4. In vivo, 
reduced blockage and lower levels of bacteria in residual 
bladder urine were found using small doses of the drug [18].  

When taken alongside sub-inhibitory levels of three different 
antibiotics, a similar dose of fluoxetine was able to control 
E. coli, P. aeruginosa, and S. aureus [19]. Conversely, when a 
petridish of agar was exposed to this small dose of fluoxetine 
for 30 days prior to E. coli seeding, huge increases in the 
MIC of three different antibiotics were observed [20]. This 
study also revealed four different modes of antibiotic efflux 
and concluded that up-regulation of pumps was caused by 
ROS-mediated mutagenesis of DNA-binding transcriptional 
regulators. A lab study of three different antibiotics treating 
Acinebacter baumanni showed that 30 days prior exposure 
to fluoxetine also caused Ciprofloxacin resistance given this 
increase in efflux. Colistin-resistance occurred by a different 
mechanism, and the status of the antibiotic imipenem did 
not change [21]. So as a general statement we can say that a 
patient’s prior exposure to fluoxetine is likely to increase their 
required dose of antibiotics for bacterial infection.

It is known that the use of antibiotics at sub-inhibitory 
levels is a cause of antibiotic resistance [22], and we have 
highlighted here that parallel micro-dosing of SSRIs negates 
this. Obviously, a patient’s co-morbidity, BMI, and regular 
medications would also be influential. All modes of resistance 
are transient [23] and so close monitoring of patient's would 
allow optimisation of the dose and timing of antibiotics and 
adjunct drugs.  

Successful antibacterial activity has been demonstrated in 
the lab and in patients with indwelling catheters for Fluoxetine 
used alone, and at micro-doses alongside low-dose antibiotics. 
A range of common medications with antimicrobial properties 
are summarised in Table 1, often working symbiotically with 
antibiotics. Alternatively, potentiation of the innate immune 
system could prevent or fight infection at an even earlier 
stage, so long as the risk of sepsis is mitigated. To put these 
conclusions in context, WHO have stated that carbapenem 
resistance in A. baumanni, P. aeruginosa and Enterobacteria 
are now a critical priority, with antibiotic resistant S. aureus  
making the ‘high priority’ list [24].
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