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Introduction

Brain-computer interfaces (BCIs) utilize brain activity to 
control external devices. BCI technology has been advancing 
for over five decades, and it has become a steadily more 
popular and reliable method of communication and motor 
function in patients with a variety of neurological disorders [1]. 
In BCIs, signals from the brain are decoded, and these signals 
are translated to device output, such as to control movements 
of a robot, prosthesis, or screen cursor, with recent research 

showing improvements in accuracy and convenience [2,3]. 

Both invasive and noninvasive techniques exist to obtain 
brain activity. The invasive techniques involve placing 
electrodes on the brain to measure neural activity [4]. 
Noninvasive techniques include Electroencephalography 
(EEG), i.e., placing sensors on the scalp to measure electrical 
activity (EEG); functional magnetic resonance imaging (fMRI), 
or magnetic energy (MEG) [4]. Among these, EEG is most 
often utilized because of the method’s non-invasive nature 
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and practicality [4,5]. In addition to its level of invasiveness, 
BCI technology can be classified according to its function as 
assistive or rehabilitative. Notably, assistive BCI replaces motor 
functions that have been lost or assists patients to control 
robots which aid them with the performance of daily tasks 
[3]. Further, rehabilitative BCIs help restore brain function by 
influencing the neurophysiology of the brain [3].

Clinically, BCIs have been an important tool for patients’ 
motor dysfunction due to CNS damage, especially in stroke-
mediated damage [3,6]. Devices leveraging BCIs, such as 
robotic prosthesis and speech generators, have successfully 
supplemented or substituted CNS functions to improve 
patients’ quality of life by facilitating the performance of 
manual tasks [6]. Moreover, with ever-growing number of 
patients needing rehabilitation services following strokes, and 
an increasingly aging population, and not enough physical 
therapists to meet the need, BCIs provide a way to answer this 
demand with effective and lasting treatment [2]. Currently, 
there are wide ranging options of BCI assisted therapy, each 
with different efficacy. Being that the application of BCIs is so 
diverse and novel, it is essential for the clinician to be aware of 
the technology’s effectiveness when using it to restore motor 
function in the setting of post-stroke rehabilitation. Due to 
the lack of a universally accepted standard of practice in the 
emerging field, the onus is upon the clinician to review the 
published literature and apply it to their practice. Consequently, 
the aim of this review is to highlight the efficacy of BCI-based 
rehabilitation of motor dysfunction in stroke patients. 

Methods

Literature search

We performed this systematic review in accordance with 

the guidelines set forth by the Preferred Reporting Items 
for Systematic Reviews and Meta-analysis (PRISMA) 2020 
statement [7]. A comprehensive search was performed for all 
human clinical trial articles which met our pre-defined search 
terms and were published in English in electronic databases 
including PubMed, Embase, and Cochrane Library between 
01.01.2018 and 11.20.2022. The following search terms 
were used: “Brain-Computer Interfaces” AND (“Amyotrophic 
Lateral Sclerosis” OR “Spinal Cord Injury” Or “Stroke”). Where 
possible, these terms were expanded using the Medical 
Subject Headings (“[MeSH]”) and Explosion (“/exp”) controlled 
vocabulary functions in PubMed and Embase, respectively. 

Screening & eligibility criteria

Two reviewers (KR and YP) screened the included studies 
independently at every stage. All discrepancies were resolved 
by discussion among both reviewers and subsequent 
consensus. Inter-rater reliability (IRR) and Cohen’s kappa (k) 
were quantified using Covidence systematic review software.

Specifically, we were interested in articles reporting on 
human clinical trials for patients recovering from stroke 
using BCI technology during the rehabilitative process 
and comparing their outcomes to a non-BCI subject group 
using standardized clinical outcome measures of motor and 
communication functionality. The inclusion criteria for the 
articles were: (1) publications that reported on clinical trials of 
a patient population recovering from stroke, SCI, or ALS; (2) 
interventional clinical trials which reported on the use and 
effectiveness of a BCI; (3) trials which reported results in terms 
of a validated clinical measure of communication or motor 
function. The exclusion criteria for the articles were: (1) clinical 
trials without randomization; (2) clinical trials without a non-
BCI control group; (3) trials in fewer than 3 patients (Figure 1). 
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Figure 1. PRISMA flow diagram for the selection of studies in the systematic review.
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Results

A total of 55 records were identified using the search terms 
defined above across PubMed, Embase, and Cochrane Libraries. 
Following removal of duplicate records, 46 research articles 
underwent initial screening of title and abstract. Among the 
30 articles selected for full text review (IRR = 0.76, k = 0.45), a 
further 9 were excluded due to wrong study design (e.g., no 
randomization), 5 due to measuring results using a unique/ 
non-standard clinical outcome measure, and 2 for using the 
wrong comparator (e.g., no control group), where IRR = 0.87 
and k = 0.72. The details of the entire study selection process 
with the respective number of articles included/ excluded at 
every stage are described in Figure 1 above.

Among the studies included in this review, 12 focused on 
clinical applications of BCI systems for improvements in upper 
extremity (UE) function in a total of 266 participants (147 
treatment and 119 controls, with 10 crossover participants). 
A further 2 studies focused on BCI applications for lower 
extremity (LE) function with a total of 58 participants (30 
treatment and 28 controls). Two studies excluded during the 
final screening process reported outcomes only on whole 
body motor activity or brain activity, respectively, and an 
additional 3 reported outcomes using non-standardized 
clinical outcome measures. None of the selected studies 
reported clinical outcomes on communication functions.

Eleven out of the twelve studies focused on UE outcomes 
reported larger initial improvements for participants in the 
treatment arm (using the BCI) as compared to those in the 
control arm (no BCI). Four studies reporting follow-up data 
collection at 3 or 6 months (including the study which did not 
report higher initial improvements using BCI) reported higher 
longstanding benefits of BCI as compared to control. Both 
studies focused on LE outcomes reported larger improvements 
for participants in the treatment arm as compared to those in 
the control arm (Table 1).

Discussion

This systematic review demonstrates that BCIs have many 
current and emerging applications with high efficacy for 
the restoration of motor function in stroke patients. An 
overwhelming 91.7% majority of studies comparing BCIs 
vs. control therapy for post-stroke upper extremity deficits 
using standardized clinical outcome measures favored the 
application of BCIs. Similarly, both studies reporting on lower 
extremity improvements which were included in this review 
favored the application of BCIs as compared to placebo or 
sham treatments.

Several clinical trials identified in our review document are 
not just significant, but lasting improvement following BCI-
mediated intervention. Notably, these include the only study 
in our systematic review which initially found BCI results to 

be no better than conventional treatment. Namely, in 2020 
Cheng et al. [8] reported that a soft robotic glove therapy 
alone was more beneficial than BCI-based soft robotic glove 
immediately following a 6-week intervention; however, BCI 
effects proved more significant at both 12- and 24-week 
follow up intervals, speaking to the technology’s long-lasting 
clinical effectiveness. Similarly, in the 2018 nonrandomized 
controlled trial, Biasiucci et al. [9] found significant FMA-UE 
measured improvement compared to the control group when 
a BCI was paired with functional electric therapy [Treatment 
mean = 28.3 (SD = 14.5), Control mean = 22.0 (SD = 12.2), 
p = 0.03]. Importantly, these results were found to persist 
in a six to twelve months follow up, providing yet another 
testament to the longevity of rehabilitative results achieved 
via incorporating BCIs as compared to the standard of care 
only.

Moreover, significant findings of BCI-mediated rehabilitation 
were found to be clinically meaningful in the rehabilitation 
of upper extremity motor function in a variety of stroke 
severities. In addition to the results reported by the 2020 
Cheng et al. [8] study referenced above, in 2019, Ramos-
Murguialday et al. [10] identified parallel findings when using 
BCI-based rehabilitation in chronic stroke patients with severe 
paresis [FMA-UE Treatment mean = 13.44 (SD = 1.96) P=0.015; 
Control mean = 14.75 (SD = 2.71), P = 0.070]. Collectively, these 
highlight the applicability and clinical utility of the technology 
in mild as well as severe disease rehabilitation.

Our search additionally identified two clinical studies which 
demonstrated the positive impact of BCI-based therapy in the 
rehabilitation of lower extremity motor function. Of note, in 
a 2021 randomized controlled trial, Yaun et al. [11] found the 
use of BCI-integrated physical therapy significantly improved 
lower limb function in subacute stroke patients [FMA-LE: 
Treatment mean = 14.9, Control mean = 12.2, P=value 0.022]. 
Considering that the results of both this study and the one 
by Zhao et al. [12] in 2022 favor BCI treatment, this provides a 
strong signal for further research into the applications of BCI 
for post-stroke lower extremity therapy as well as other motor 
pathologies.

More clinical investigations should be done to assess the 
use of BCI-based rehabilitation in other clinical settings such 
as in the rehabilitation of communication in stroke patients 
or patients with other diseases. As one example, among the 
studies excluded from analysis in our systematic review due 
to a non-stroke clinical indication, one study investigated the 
use of BCIs in patients with degeneration of motor pathways 
necessary for speech such as in amyotrophic lateral sclerosis 
(ALS) [13]. Many of these individuals rely on methods of 
augmented and alternative communication (AAC), such as 
eye gaze tracking or computer peripherals (joystick, stylus, 
mouse), to communicate [14]. These methods require a certain 
level of volitional control which limits their target populations. 
Similarly, for patients with locked in syndrome (LIS) where there 
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is total paralysis except for eye movements, many methods of 
AAC are not feasible. BCIs have been investigated for use in 
conjunction with AAC to allow for use of AAC devices without 
volitional control [15]. The majority of research in this area 
involves electrocorticography (ECoG), the invasive placement 
of electrodes into the subdural space to measure cortical EEG 
activity [13]. Early studies in this area worked on decoding the 
phenomes of speech [16,17]. Sokumbi et al. [18] created a real-
time neural speech recognition (rtNSR) package that classified 
speech at both the phonetic and sentence level. Herff et al. 
[19] created a Brain-to-Text model that could reconstruct a 
limited set of spoken phrases from neural data obtained from 
ECoG. More recent studies have focused on using a vocoder, 
which produces naturally sounding speech from either text 
or acoustic features of decoded speech [20]. Non-invasive 
methods such as steady state evoke potentials (SSVEP) have 
also been studied in patients with LIS and ALS, but their 
lower signal quality restricts their potential for decoding 
speech [14]. However, despite these promising results, the 
paucity of clinical trials related to the application of BCI in 
communication, ALS, or spinal injury patients demonstrates 
the need for further investigation.

Our systematic review had several limitations. The relatively 
small number of eligible studies with varying demographic 
characteristics of patients may affect the generalizability of 
the findings, especially for studies assessing the effects of 
BCIs on LE function recovery where only two studies made it 
to the final analysis stage. The filtering was further narrowed 
by the exclusion of non-English literature and studies without 
standardized clinical outcomes and/ or non-BCI control groups. 
Among the included studies, there was heterogeneity in the 
type of BCI technology utilized, baseline clinical characteristics 
of patients, and the outcomes evaluated. The heterogeneity 
in the evaluated outcomes emphasizes the importance of 
establishing a more standardized protocol and reporting 
method to assess the clinical and technical outcomes of BCI 
applications. Despite the limitations listed here, the authors 
believe this systematic review provides important guidance 
and validation on the use of BCI based motor rehabilitation for 
stroke patients. 

Conclusion

This study addresses the lack of current standards of practice 
in BCI-mediated motor rehabilitation in stroke patients though 
a systematic review of the literature. Our findings demonstrate 
the utility of BCI in this context, with 91.6% of identified studies 
focused on UE and 100% of LE studies reporting larger initial 
improvements for participants in the treatment arm. These 
results support the wider adoption of BCIs for upper as well as 
lower motor improvements at stroke rehabilitative programs 
and facilities. Further research is needed to explore the 
technology’s application in communication improvements 
and its clinical utility for other medical indications such as ALS, 
LIS, and others. To reach the technology’s full clinical potential, 

researchers and healthcare workers should unite around 
a common set of practice protocols and clinical outcome 
measures in their future efforts in the field.
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