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Abstract 

Small leucine rich repeat proteoglycans (SLRPs) exist in the extracellular matrix. SLRPs contain tandem arrays of LRRs flanked by cysteine 
clusters at the both N- and C-termini. The extreme N- and/or C-termini contain low complexity sequences, glycosaminoglycan (GAG) chain 
and/or sulfated tyrosine residues in some members of SLRPs. The LRR solenoid structure may be divided into four parts consisting of a 
concave surface, an ascending surface, a convex surface, and a descending surface. SLRPs share many biological functions including collagen 
fibrillogenesis, signaling, innate immunity, and inflammation through the binding of various ligands. We undertake a comprehensive literature 
search of publications in order to make a list of ligands of SLRPs. We describe and discuss the interacting sites of SLRPs to binding partners. The 
protein-ligand interactions occur on not only the concave surface but also the ascending surface and the N- or C-terminal capping regions. 
In addition, the extreme N- and/or C-terminal regions with the GAG chains or sulfated tyrosine residues participate in ligand-interactions.

Keywords: Small leucine rich repeat proteoglycan, Leucine rich repeat, Solenoid structure, Concave face, Ascending loop, Capping 
structure, Ligand interactions, Glycosamoninoglycan

Abbreviations: BAI: Brain-specific Angiogenesis Inhibitor; BMP: Bone Morphogenic Protein; CCP: Complement Control Protein; C4BP: 
C4b-Binding Protein; CpG: Cytosine – phosphate – Guanine; CpG-DNA; CpG Dideoxynucleotide motif; CS: Chondroitin Sulfate; CTGF/CCN: 
Connective Tissue Growth Factor; CXCL1: CXC chemokine KC; Dbp: Decorin-binding protein; DS: Dermatan Sulfate; ECM2: Extracellular Matrix 2; 
EGFR: Epidermal Growth Factor Receptor; FGF: Fibroblast Growth Factor; FHR: Complement factor H-related protein; GAG: Glycosaminoglycan; 
HS: Heparan Sulphate; Hsp47: Heat shock protein 47; Ig: Immunoglobulin-like domain; IR: Insulin Receptor; IGF: Insulin like Growth Factor; 
IGF1R: Insulin-like Growth Factor 1 Receptor; LDL: Low-Density Lipoprotein; LOX: Lysyl Oxidase; LPS: Lipopolysaccharide; LRP-1: Low-density 
lipoprotein Receptor-related Protein 1; LRR: Leucine Rich Repeat; MAGP-1: Microfibril-Associated Glycoprotein-1; MBL: Mannose-Binding 
Lectin; Met: Hepatocyte growth factor receptor; MMP: Matrix Metalloproteinase; MUSK: Muscle-Specific Kinase; NF-κB: Nuclear Factor-kappa 
B; p75NTR: Low-affinity nerve growth factor receptor; PDGF: Platelet-Derived Growth Factor; PSMD2: 26S Proteasome non-ATPase regulatory 
subunit 2; SLRP: Small Leucine Rich Repeat Proteoglycan; TGF: Transforming Growth Factor; TLR: Toll-Like Receptor; TNF-α: Tumor Necrosis 
Factor-alpha; TN-X: Tenascin X; TSP-1: Thrombospondin-1; TSR: TSP Type-1 repeat; VEGFR-2: Vesicular Endothelial Growth Factor Receptor 2; 
vWF: von Willebrand Factor; WISP-1: Wnt-I-induced Secreted Protein-1; TRPM1: Transient Receptor Potential Melastatin 1
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Introduction

Small leucine rich repeat proteoglycans (SLRPs) exist in the 
extracellular matrix [1-7]. They are divided into five distinct 
classes; class I consists of biglycan, decorin asporin (PLAP-1), 
and ECM2, class II is fibromodulin, lumican, PRELP, keratocan, 
and osteomodulin/osteoadherin, class III is osteoglylcin/
mimecan, epiphycan, and opticin, class IV is chondroadherin-
like protein, nyctalopin, and Tsukushi, and class V is podocan 
and podocan-like protein 1 (Table S1) [8,9]. SLRPs contain 
tandem arrays of LRRs flanked by cysteine clusters at the both 
N- and C-termini [8,9]. The disulfide bonds of the Cys clusters 
stabilize a capping structure that shields the hydrophobic 
core of the first LRR unit at the N-terminus and the last unit 
at the C-terminus [10,11]. The extreme N- and/or C-termini 
contain low complexity sequences, glycosaminoglycan (GAG) 
chain and/or sulfated tyrosine residues in some members 
of SLRPs. The LRRs adopting short β-strands at positions 3 – 
5 form a parallel β-sheet and form a solenoid structure of a 
super helix arrangement [10-12]. The LRR solenoid structure 
may be divided into four parts consisting of a concave face, an 
ascending face, a convex face, and a descending face (Figure 
1) [10,13]. LRRs are characterized by a common molecular 
architecture adapted to protein–protein interactions [11]. 

SLRPs are capable of binding to various ligands through which 
play versatile functions including collagen fibrillogenesis, 
cellular proliferation, survival, adhesion, migration, 
differentiation, invasion, signaling, innate immunity and 
inflammation [5,6].

Many reviews on the functions, structures, ligands, and 
diseases of SLRPs [1-9] and individual members have been 
published; the individual members reviewed are decorin [14-
19], biglycan [16,17,20,21], fibromodulin [22,23], lumican [24], 
osteoglycin [25,26], and Tsukushi [27,28]. Gubbiotti et al., [14] 
did a comprehensive analysis of decorin-binding partners 
and discussed their versatile functions; there is the STRING 
database that is a database of known and predicted protein-
protein interactions [29].

Here we undertake a comprehensive literature search of 
publications in order to make a list of ligands of all members of 
SLRPs. We describe and discuss the interacting sites of SLRPs to 
the binding partners. The protein-ligand interactions occur on 
not only the concave face but also the ascending face and the 
N-terminal capping region. In addition, the extreme N- and/
or C-terminal regions with the GAG chains or sulfated tyrosine 
residues participate in ligand-interactions.

Figure 1. Structure of decorin (PDB ID: 1XKU). (A) Cartoon backbone representation and close-up view of decorin. Secondary structure 
elements and intramolecular disulfide bonds are depicted. (B) Cartoon backbone representation of a typical LRR fragment (LRR3) consisting 
of 78-LHTLILINNKI SKISPGAFAPLVK-101 in decorin. By convention, the loop fragments connecting the concave to the convex side of the 
repeats from the lateral ascending face, whereas the loops connecting the convex to the concave side form the lateral descending face.
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Sequence Features and LRR Solenoid Structures of 
SLRPs

The repeat numbers of LRRs in SLRPs range from 8 to 22 
(Table S1). Class I and II have 12 repeats; only ECM2 has 15 
repeats [9]. The N-terminal residues of class II SLRPs and class 
I ECM2 form one additional strand of the concave β-sheet. 
The repeat number of class III, IV, and V are 8, 12, and 22 or 
18, respectively; only nyctalopin has 13 repeats. Most SLRPs 
including decorin and biglycan at the extreme N-terminal side 
undergo glycosylation: glycosaminoglycan (GAG) including 
chondroitin sulfate (DS) and/or dermatan sulfate (CS) [7]. 
Fibromodulin, lumican, and osteomodulin also undergo 
sulphation in tyrosine clusters in the extreme N-terminal 
regions [30,31]. Some SLRPs show low complexity sequences 
flanking LRR domains on the extreme N-terminal sides [9]; 
they are poly-Asp in asporin and Arg/Pro-rich amino acids 
in PRELP. Biglycan and decorin form stable dimers through 
concave face interactions [32,33]. 

Crystal structures of five SLRPs are available (Table S1) [32-35]. 
The remaining SLRPs have been predicted by AlphaFold [36]. 

Histidines and aromatic residues are markedly concentrated 
on the concave faces of fibromodulin and chondroadherin [34]. 
Aromatic - aromatic and methionine – aromatic interactions 
frequently occur [9]. The HELFIT program calculates the helix 
parameters of helix axis, helix pitch (P), helix radius (R), number 
of repeats per turn (N), and handedness [37,38]. In LRRs, the 
Cα coordinates of the consensus leucine residue at position 4 
(located in the center of short β-strands) in individual repeat 
units are used for the analysis. Table S1 and Figure S1 show 
the helix parameters. The LRR domains are well represented 
by right-handed helices. The helix parameters of class III 
remarkably differ from those of the other classes (I, II, IV, and 
V); class III shows the largest P and the smallest R. 

A List of Ligands of SLRPs

Table 1 shows a list of ligands of SLRPs. Binding partners 
of ECM2 and podocan-like 1 protein are not identified; the 
predicted candidates are described in the STRING database 
[29]. We tentatively classified ligands into nine groups from 
the point of view of plausible binding sites of SLRPs to their 
ligands. 

Table 1. A list of ligands of SLRPs.

Class SLRPs Ligands

I Decorin collagen I [40-43,51-53]; collagen II and III [44,53];

collagen V [45,52]; collagen VI [46-48,51,55]; 

collagen XII [49]; collagen XIV [50,54]; TGF-β [77,84]; 

Met [15,95,96]; LRP1 [101-103]; dermatopontin [109,110];

C1q [52,125]; MBL [129]; TLR2 and TLR4 [130];

EGFR, ERbB2, and ErbB4 [15,149-151];

IGF-1 [159]; IGF-2 and insulin [160]; IGF1R [159-163];

fibronectin [167-169]; VEGFR-2 [170, 171]; HBHA [182];

α2β1 integrin [184,185]; TN-X [194]; LDL [195,196]

DbpA and DbpA [197-206]; vWF [208]; matrilin-1 [209];

TNF-α [215]; TSP-1 [219,220]; PDGF [229,230]; Zn2+ [231]; 

fibrinogen [232,233]; myostatin [236,237];

CTGF/CCN2 [236-240]; WISP-1/CCN4 [241];

apolipoprotein(a) [244]; MAGP-1 and fibrillin-1 [245];

tropoelastin [246]; filamin-A [250]; Hsp47 [259]; resistin [257]

Biglycan collagen I [53,56]; collagen II [44,53]; collagen III [53,57];

collagen VI [55]; collagen IX [58]; TGF-β [78,79]; BMP-2 [85,86];

BMP-4 [90,210]; LRP6 [104,105]; collagen V and C1q [124]; 

MBL [129]; C1q [126]; CD14 [133]; TLR2 and

TLR4 [131,132,145], CpG DNA [136]; TLR3 [139];
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P2X4/P2X7 [146]; IGF1R [164]; TGF-β [154,155]; 

DbpA and DbpB [207]; matrilin-1 [209]; chordin [210]; 

α-dystroglycan [214]; TNF-α [215]; CD44 [222];

FGF-2 [230]; α– and γ– sarcoglycan [238]; MAGP-1 [246];

topoelastin [246]; MuSK [266]; endostatin [268]

Asporin collagen I [66]; Ca2+ [66]; TGF-β1 [80-83]; BMP2 [87,88]; 

FGF-2 [106]; ErbB2 [152]; IGF1R [165]; PSMD2 [267];

CD44 [223,224]; smad2/3 [254]

ECM2 –

II Fibromodulin collagen XII [48]; collagen I [58-63]; collagen II [59,62]; 

collagen VI [64]; LOX [74]; TGF-β [78,79]; FGF-2,

TSP-1, the NC4 domain of collagen IX, and interleukin-10 [121];

MMP-13 [121]; FH [127]; C1q [127]; Ty384 variant of FH [177];

FHR1 and FHR5 [180]; C4BP [217]; the NC4 domain of collagen 

IX [218]; myostatin [234, 235]; Hsp47 [258]; fibronectin [112]

Lumican collagen I [64,67]; MMP14 [118-120]; LPS [134,136];

caveolin 1 and CD14 [136], CpG DNA [136];

β1, β2, αM, and αL and α2β1 integrins [186-189]; ALK5 [243];

CXCL1 [253]; p120 [253,270]; tubulin [255,256];

aggrecan [258]; Hsp47 [259]; Fas ligand [262]

PRELP IGF1R [166]; p75NTR [166]; FH [176]; FHR1 and FHR5 [180];

p65 NF-κB [213]; C4BP [217]; perlecan and collagen [226]; 

heparin and HS [227]

Keratocan collagen I [68]; CXCL1 [253]

Osteomodulin Collagen I [34]; BMP-2 [89]; PRELP, FGF-2, fibronectin, CILP, 

TSP-1, and antithrombin III [121]; FH [128]; C1q [128]

FHR1 and FHR5 [180]; αvβ3 integrin [190]; C4BP [217];

the NC4 domain of collagen IX [218]

III Osteoglycin collagen I [67]; BMPs [94]; VEGFR-2 [172,173]

Opticin collagen fibrils (including collagens II, and XI or V/XI) [71]

heparin, HS, chondroitin 4-sulfate, and DS [228];

collagen XVIII [228], retinal growth hormone [271]

Epiphycan collagens [72] 

IV Chondroadherin collagen II [69]; α2β1 integrin [191,192]; C1q [128]; FH [128]

C4BP [217]; HS [242]

Nyctalopin TRPM1 [273,274]; mGluR6 [274]

V Tsukushi TGF-β1 [83], CTGF/CCN2 [83]; BMP-4 [83,91-93];
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Binding Sites of SLRPs to Ligands

Concave face

Collagen: The collagen family comprises 28 members (I–
XXVIII) in vertebrates [39]. Various types of collagens are bound 
to SLRPs [3]; decorin (I, II, III, V, VI, XII, XIV) [40-55], biglycan 
(I, II, III, VI) [44,53,55-58] and fibromodulin (I, II, VI) [49,59-
65] (Table 1). Asporin [66], lumican [64,67], keratocan [68], 
osteomodulin/osteoadherin [35], osteoglycin/mimecan [68], 
and podocan [69] bind to collagen I, while chondroadherin 
binds to collagen II [70]. Epiphycan and opticin also bind 
collagens [71,72]. The binding sites have been investigated 
in decorin, asporin, fibromodulin, lumican, and osteomodluin 
[35,42,43,59,64,66,67,73,74]. These experimental results 
indicate that the collagen binding site is mapped on the 
concave face or the ascending loop [9,75,76]. Collagen triple 
helix may span across 7-8 LRRs in the SLRPs [9]. The binding 
is probably due to electrostatic interactions and/or aromatic/
histidine – aromatic interactions [9,35,73]. In addition to polar, 
ionic, and cation-π interactions, hydrophobic interaction and 
CH/π interaction might contribute to the binding.

Transforming growth factor-β (TGF- β): TGF-β is 
synthesized as a latent form (L-TGF-β) containing a 25-kDa 
N-terminal latency-associated peptide (LAP) and a 12-kDa 
C-terminal growth factor (mTGF-β) domain. TGF-β exists in 
three isoforms (TGF-β1, TGF-β2, and TGF-β3) in humans. 
Decorin, biglycan, and fibromodulin bind to the three isoforms 
[77-79]. Fibromodulin interacts differently with different TGF-β 
ligands; fibromodulin dampens TGF-β3-mediated antimotility 
effects [79]. Asporin and Tsukusi also bind to TGF-β1 [80-83]. 
Decorin fragment Leu155-Val260 (LRR5 to LRR9) interacts 
with TGF-β [84]. Asporin amino acids 159-205 (LRR4 to LRR6) 
mediate its interaction with TGF-β1 [81]. 

Bone morphogenetic proteins (BMP-2 and BMP-4): BMP-2 
and BMP-4 being 92% identical are also members of the TGF-β 
protein family. Biglycan, asporin, and osteomodulin interact 
with BMP-2 [85-89]. In biglycan LRR2 and LRR3 sit on a face 
interacting with BMP-2 [86]. The interacting site in asporin is 
LRR5 [88]. Osteomodulin binds to BMP-2 via LRR10 and LRR11 
and also forms complexes with BMP receptors [89]. BMP-4 
binding is coincident with biglycan [90]. Tsukusi interacts 
with BMP-4 [83,91,92]. Tsukushi binds directly to both BMP4 
and chordin, and consequently forms a ternary complex with 
them [93]. Osteoglycin binds BMPs [94].

Hepatocyte growth factor receptor (Met): Decorin binds 
directly and with high affinity (Kd = ~1.5 nM) to Met [15,95,96]. 
The structure of the InB-Met complex is available [97-100]. An 
LRR protein, InlB, consists of an N-terminal LRR region, a central 
B repeat and three C-terminal GW domains; the LRR region is 
flanked N-terminally by a helical cap and C-terminally by an 
Ig-like inter-repeat region. The structure reveals that there are 
two contacts in the InlB-Met complex [99]. The concave face 
of the InlB LRR region interacts tightly with the first Ig domain 
of the Met stalk. A second contact is between InlB and the 
Met Sema. In the decorin-Met interaction, we strongly infer 
that the Met binding site is located on the concave face of the 
decorin LRR region. 

Low density lipoprotein receptor-related proteins 1 and 
6 (LRP1 and LRP6): LRP1 is an endocytic receptor for decorin 
[101-103]. Biglycan insteracts with LRP6 [104,105], which 
activates the receptor and attenuates β-catenin degradation 
[105]. The internal region of LRR6 in decorin is required for 
interaction with LRP-1 [102]. Thus, we infer that LRP1 interact 
with decorin through the concave surfce of the decorin LRR 
region.

Fibroblast growth factors (FGFs): Asporin directly interacts 
with FGF-2 [106]. Tsukushi also interacts with FGF-8, FGF-8b, 
and FGF-10 [83,91,107]. The direct binding to FGF-2 promotes 
FGF-2–FGF receptor 1 (FGFR1) complex formation. Awata et 
al., [106] reason that the interacting site of asporin is LRR5, 
while Kubo et al., [19] and Seidler et al., [108] suggest that 
FGF2 binds to the GAG chain of decorin. 

Dermatopontin (Tyrosine-rich acidic matrix protein): 
Decorin interacts with dermatopontin [109,110]. The core 
protein of the decorin molecule binds to dermatopontin and 
the interaction is probably ionic [110]. The dermatopontin-
decorin complex binds fold more TGF-β1 than did each 
component individually [111]. In Silico analysis predicts 
that the entire concave face of decorin interacts with 
dermatopontin [112].

Nodal and Vg1: Nodal and Vg1 contain TGF-β domains 
[113,114]. Chick Tsukushi binds to nodal and Vg1 [83,115]. The 
structures of two LRR proteins (GARP and LRRC33) in complex 
with TGF-β1 are available [116,117]. The two LRR proteins 
together contain 22 LRRs. Three main interfaces occur; 
namely GARP: mTGF- β1B, GARP: LAPA, and GARP: LAPB. The 
binding footprint of TGF- β1 to GARP comprises not convex 

FGF-8, FGF-8b, FGF-10 [83,91,107]; nodal and Vg1 [83,115],

netrin 1 [91]; Delta [83]; Sox2 [92]; chordin [93];

Wnt2b and Frizzled4 [263]; Frizzled3 [264]

Podocan Wnt4 [265]

Podocan-like protein 1 –
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face but lateral ascending and concave faces (LRR4 to LRR11) 
[116]. All of myostatin, BMP-2, BMP-4, nodal, and Vg1 contain 
the N-terminal region corresponding to the latent peptide 
(L-TGF-β) of TGF-β and the C-terminal mTGF-β. Thus, we 
infer that these TGF family proteins interact with both lateral 
ascending and concave faces of the SLRPs (decorin, biglycan, 
fibromodulin, asporin, osteomodulin, and Tsukushi).

Matrix metalloproteinase-14 (MMP-14) and -13 (MMP-13): 
Lumican interacts with MMP-14 [118-120] and fibromodulin 
with MMP-13 [121]. The interactions of lumican-derived 
peptides and MMP-14 were investigated [122]; lumicorin 
and L9M of the peptide sequences are SSLVELDLSYNKLKNIP 
(LRR10) and ELDLSYNKLK, respectively [122]. An in silico 
approach predicted that decorin, biglycan, fibromodulin, and 
lumican bind to MMP-14 through their concave face [123]. 

Netrin-1: Netrin-1 as well as NetrinG1 is a member of the 
EGF family. It contains an N terminal laminin domain, three 
EGF like domains and a C- terminal cell  interaction netrin- like 
domain. Tsukushi interacts with netrin-1 [91]. The structures 
of NetrinG1 – NGL1 and NetrinG2 – NGL2 complexes have 
been determined [124]. NGLs are an LRR protein and contains 
nine LRRs forming the LRR domain. Three loops of the 
N-terminal laminin domain of NetrinG1 and NetrinG2 contact 
the concave faces of the LRR domains of NGL and NGL2, 
respectively. We infer that the concave face of the Tsukusi LRR 
domain is included in the interaction with netrin-1 via its three 
corresponding loops.

C1q and Mannose-binding lectin (MBL): C1q and mannose 
binding lectin (MBL), a member of the collectin family of 
proteins, have a characteristic triple-helical collagen-like 
region (CLR) at the N terminus. Decorin [52,125], biglycan [126]; 
fibromodulin [127], osteomodulin [128], and chondroadherin 
[128] bind to C1q, while decorin and biglycan efficiently bind 
to MBL [129]. C1q but not FH directly interacts with the 10-
kDa N-terminal fragment of fibromodulin [127]. Decorin 
and fibromodulin bind the N-terminal collagenous part of 
complement C1q [125,127]. Taken together, we infer that the 
concave face of the LRR domains along with the N-terminal 
capping region participates in the interactions.

TLR2, TLR3, TLR4, CD14, caveolin 1, liposaccharide (LPS): 
CD14 and caveolin 1 are common TLR coreceptors. LPS is 
a ligand of TLR4. Decorin binds to TLR2 with a dissociation 
constant (Kd) of 59 ± 10 nM and to the TLR4-MD2 complex 
a Kd of 37 ± 5 nM [130]. Biglycan interacts with TLR4 and to 
a lesser extent with TLR2 [131,132]. Soluble biglycan is also a 
high-affinity ligand for CD14; the GAG chains are not required 
for binding to CD14 [133]. Lumican alone does not bind to 
TLR4, although lumican interacts with LPS [134]. Lumican also 
interacts with CD14 and LPS [135], and with CD14 and caveolin 
1 [136]; CD14 binds LPS [137]. In the lumican-CD14 interaction, 
a critical role is played by Tyr20 of lumican [138]. The sequence 

of YFKRFNALQY in the LRR8 to LRR9 motif of lumican is a good 
candidate for Cav1 interactions [136]. Very recently, biglycan 
was identified as an endogenous TLR3 ligand [139]. The 
structure of the TLR4-MD-2/LPS complex indicates that LPS 
is bound to the hydrophobic pocket in MD-2 [140]. Sequence 
alignment indicates that lumican likely forms a hydrophobic 
concave face (Ala, Tyr, Trp, and Ile) in LRR1 – LRR3, although 
the tertiary structure is unknown still [9]. Taken together, we 
infer that LPS interacts with the concave face of lumican.

Cytosine – phosphate – guanine (CpG) dideoxynucleotide 
motif (CpG-DNA): Lumican competes with CD14 to bind CpG-
DNA in vitro [136]. Biglycan binds CpG-DNA and suppresses 
TLR9 response [136]. TLR9 with 26 LRRs recognizes bacterial 
and viral DNA containing CpG-DNA [141]. The structure of the 
TLR9-CpG DNA complex reveals that CpG-DNA is recognized 
by both promoters, in particular by the N-terminal LRRNT–
LRR10 fragment from one protomer and the C-terminal-
terminal fragment (LRR20–LRR22) from the other [142,143]. 
Baumann et al., [144] suggested that CD14 binds to CpG-DNA 
directly, while Li et al., [145] disputed the claim that CD14 is 
involved in CpG DNA capture. We infer that CpG DNA may 
interact with the concave face of the LRR domain in biglycan.

Purinergic P2X4/P2X7 receptors: Biglycan simultaneously 
interacts with TLR2/4 and purinergic P2X4/P2X7 receptors, 
which activates the NLRP3 inflammasome [146]. The 
interaction of TLR2/4 with P2X7R/P2X4R occurs in the 
presence of biglycan. Taken together, we infer that the dimers 
of biglycan interact with TLR2/4 and P2X7R/P2X4R via the 
concave face and/or the ascending of biglycan. 

Epidermal growth factor receptors (EGFR, ErBb2, and 
ErbB4): Epidermal growth factor receptor (EGFR) and insulin 
receptor (IR) families are both members of the receptor tyrosine 
kinase super family [147]. The EGFR ectodomain contains 
four domains - L1, CR1, L2 and CR2; the L1 and L2 domains 
are homologous. The L1 and L2 domains have five LRRs [148]. 
The EGFR family consists of EGFR (ErbB1/HER1), ErbB2 (HER2/
EGFR2/Neu), ErbB3 (HER3), and ErbB4 (HER4). Decorin binds 
to EGFR, ErBb2, and ERbB4 [15,149-151]. Asporin interacts 
with ErBb2 and both form a complex [152]. Decorin binding 
was mapped to a narrow region of the EGFR within its ligand 
biding L2 domain [153]. The central part of LRR6 in decorin is 
required for interaction with the EGFR [153]. 

TGF-α: TGF-α belongs to the EGF family. Biglycan binds to 
TGF-α [154,155]. The structure of TGF-α consists of a third, 
N-terminal strand (residues 4–6) aligned with the large 
β-ribbon (residues 19–33) to form a three-stranded β-sheet 
and an ordered C terminus. The structure of the TGF-α – EGFR 
complex is available [156,157]; TGF-α molecule is clamped 
between the concave faces of the L1 and L2 LRR domains from 
the EGFR molecule. We infer that the binding site of TGF-α may 
be the concave face of the LRR domain in biglycan.
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Insulin like growth factor (IGF) and insulin growth 
factor 1-receptor (IGF1R): The IGF-I system includes six 
binding proteins, three ligands (IGF-1, IGF-2, and insulin) and 
three major receptors of IGF1R, IR, and the IGF 2 receptor 
(IGF2R) [158]. The IR family that consists of IR, IGF1R and IR-
related receptor forms two polypeptide chains, α and β. The 
ectodomains contain four domains of L1, CR1, L2 and CR, as 
seen in the EGFR family. The L1 and L2 regions of IGF1R have 
six and five LRRs, respectively [148]. Decorin binds IGF-1 [159]. 
Decorin also binds IGF-2 and insulin with high affinity, and, to a 
lesser extent, proinsulin and the insulin receptor A isoform (IR-
A) [160]. Decorin [159-163], biglycan [164], and asporin [165] 
bind to IGF1R. PRELP directly binds to extracellular domains 
of IGF1R with low micromolar affinities [166]. Computational 
models of IGF1R and biglycan docking were proposed; none 
of the suggested complexes had the convex face of biglycan 
interacting with the receptor [164].

Low-affinity nerve growth factor receptor (p75NTR): 
p75NTR is a type I transmembrane protein and act as a tyrosine 
kinase co-receptor. PRELP directly binds to p75NTR with low 
micromolar affinities as well as IGF1R [166]. 

Ascending face

Fibronectin: Decorin interacts with the cell-binding 
domain of fibronectin [167] and also binds to the N-terminal 
fibronectin type III-repeat in collagen XIV [50]. Because heparin 
competed with decorin competitively, binding of decorin to 
fibronectin likely occurs at a heparin-binding region [168]. The 
sequence of NKISK in LRR3 (forming a part of ascending loop) 
of decorin is possibly involved in the interaction between 
the proteoglycan and fibronectin [169]. Fibromodulin also 
interacts with fibronectin [112]. In Silico analysis predicts that 
the fibromodulin-fibronectin interaction occurs on the entire 
concave face of fibromodulin [112].

Vesicular endothelial growth factor receptor 2 (VEGFR-2): 
Decorin binds VEGFR-2 [170,171]. Osteoglycin interacts with 
VEGFR2 [172,173], but not with VEGF-A. Decorin binds to the 
N terminus of VEGFR-2 in a region overlapping with its natural 
ligand VEGF-A [170]. The binding site of the decorin core 
protein includes 12 amino acid sequence LGTNPLKSSGIE in 
LRR5; most avid binding was represented by LGTNPLK at the 
proximal end [170]. The sequence constitutes an ascending 
loop in the LRR solenoid structure.

Complement factor (FH) and complement factor H-related 
protein-1 and -5 (FHR1 and FHR5): The complement system 
is a part of the innate immune system that enhances the ability 
of antibodies and phagocytic cells [174,175]. Human FH is 
composed of 20 complement control protein (CCP) domains. 
Fibromodulin [127], osteomodulin [128], chondroadherin 
[128] and PRELP [176] bind to FH. The Tyr-384/402 variant of 
FH binds fibromodulin better than the His-384 form [177]. The 
side chain of Tyr/His at position 384/402 is exposed to solvent 

[178]. Thus, we infer that π-π stacking interaction between 
neutral histidine in fibromodulin and aromatic amino acid 
Tyr-384 in FH occurs on the ascending loop face [102,179]. 
Fibromodulin, osteomodulin, and PRELP bind to complement 
factor H-related protein-1 and -5 (FHR1 and FHR5) [180]. FHR1 
binds to these ECM components through its CCP domains 4-5, 
whereas FHR5 binds via its middle region, CCPs 3-7. Both FHRs 
competitively inhibit the binding of FH. Biglycan and decorin 
do not bind FH, FHR1, and FHR5 [180]. 

The N-terminal region

Decorin and biglycan have the extreme N-terminal region 
with GAG chains [7]. Fibromodulin and osteomodulin have 
N-terminal extensions with a variable number of O-sulfated 
tyrosine residues [30,31]. Strong ionic interactions are 
expected between GAGs and proteins. The main contribution 
to binding affinity comes from ionic interactions between 
the highly acidic sulphate groups and the basic side chains 
of arginine and lysine [181]. The interactions of GAGs with 
proteins also involve a variety of different types of interactions, 
including van der Waals (VDW) forces, hydrogen bonds, and 
hydrophobic interactions with the carbohydrate backbone 
[181].

The heparin-binding mycobacterial surface protein 
(HBHA): HBHA binds to decorin [182]. A truncated C-terminal 
HBHA fragment which contains Lys-Pro-Ala-rich repeats binds 
to decorin. This interaction likely occurs between the sulfated 
GAG extending from the decorin core protein and the Lys-Pro-
Ala repeats at the C terminal side. 

Integrins: Collagen fibrils can self-assemble [3,183]. The cell 
participates in organization of the fibrils through interactions 
involving integrins, fibronectin, thrombospondins, and 
tenascins [183]. Decorin directly interacts with α2β1 integrin 
[184,185], lumican with β1, β2, αM, αL, and α2β1 integrins 
[186-189], osteomodulin with αvβ3 integrin [190], and 
chondroadherin with α2β1 integrin [191,192]. The GAG moiety 
of decorin interacts with α2β, but not α1β1 integrin, at a site 
distinct from the collagen I-binding A-domain [184]. 

Tenascin X (TN-X): TN-X is an extracellular matrix protein 
whose absence results in an alteration of the mechanical 
properties of connective tissue [193]. TN-X consists of the N- 
to the C-terminal part by a Tenascin assembly domain (TAD), 
a series of 18.5 repeats of EGF-like motif, a high number of 
Fibronectin type III module, and a fibrinogen-like globular 
domain. The DS chains of decorin bind to the heparin-binding 
site included within the fibronectin-type III domains 10 and 11 
of TN-X [194]. Interestingly, a binding site that interacted with 
the decorin core protein could be assigned to the N-terminal 
fibronectin type III repeat of collagen XIV [50]. In addition, an 
auxiliary binding site located C-terminal to this fibronectin 
type III repeat interacted with the GAG of decorin [50].
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Low-density lipoprotein (LDL): LDL transports cholesterol 
and triglycerides from the liver to peripheral tissues. Decorin 
binds to LDL [195]. The GAG side chain of decorin is essential 
for LDL binding [196].

Decorin -binding proteins A and B (DbpA and DbpB): 
Two surface lipoproteins, DbpA and DbpB of the Lyme 
disease spirochete Borrelia burgdorferi bind decorin and GAGs 
[197-206]. DbpA and DbpB also bind biglycan only under 
flow condition [207]. GAGs are known to interact with Dbps 
through electrostatic interactions [206]. Lysine residues at 
the C-terminal sides of the Dbps are important in binding to 
decorin and GAGs [198-201,203,204]. Three lysine residues, 
Lys-82, Lys-163, and Lys-170 (referred to as the canonical 
binding GAG-residues) are critical for decorin binding 
[200,201]. In B. garinii SBK40 DbpA, Lys-80, Lys-161, and Lys-
168 correspond to the canonical GAG-binding residues [206]. 
Multiple sequence alignment of the five homologs of Dbps 
shows that Lys-80 in DbpA and Lys-79 in DbpB are conserved, 
which indicates their importance of Dbp proteins [206]. Lys-78 
and Lys-82 of DbpA, on the contrary, are part of the second 
potential binding site. The protein core of decorin may be 
required for detectable binding by DbpA [198,202]. However, 
there is yet no evidence of direct interactions between the 
decorin core protein and Dbps. 

von Willebrand factor (vWF), matrilin-1, and chordin: 
vWF is a large protein with 2,813 amino acids and contains 
three types of VWF domains (vWFA 1-3, vWFC 1-3, and vWFD 
1-4). Matrilin-1 contains two vWFA domains and one EGF-like 
domain. Chordin contains one vWFC domain. Decorin binds 
to vWF [208]. Decorin or biglycan interact with matrilin-1 
[209]. Tsukushi binds to chordin [93]. Biglycan binds chordin 
and BMP-4 in Xenopus embryos [210]. The GAG side chains 
of decorin mediate the interaction with vWF [208]. The same 
binding mode may occur in biglycan. However, Tsukushi 
has no GAG chain. The structure of the complex of VWF A1 
domain – the extracellular LRR domain of GP1bα reveals that 
the concave face is involved in the interactions [211, 212]. We 
infer that the vWF domain within chordin directly interacts 
with Tsukushi via its concave face.

p65NF-κB: Nuclear factor-kappa B (NF-κB) is an essential 
transcription factor in the control of expression of genes 
involved in cell growth, differentiation, inflammation, and 
neoplastic transformation. Biotinhbd PRELP and p65NF-
κB physically interact; the GAG-binding domain of PRELP 
acts as a cell type-specific NF-κB inhibitor that impairs 
osteoclastogenesis [213].

α–Dystroglycan: α-Dystroglycan is an extracellular 
peripheral membrane glycoprotein anchored to the cell 
membrane by binding to a transmembrane glycoprotein. 
Torpedo biglycan, in a fashion dependent on its CS side 
chains, binds to the protein core of the C-terminal third of 
α-dystroglycan [214].

Tumor necrosis factor-α (TNF-α): TNF-α is a cytokine 
that plays a central role in inflammation, immune system 
development, apoptosis, and lipid metabolism. TNF-α binds 
to both biglycan and decorin with Kds of 0.81 μM and 1.23 
μM, respectively [215]. The binding occurs via both the core 
protein and the DS GAG chain.

C4b-binding protein (C4BP): C4BP is a complement, potent 
soluble inhibitor and contains many CCP domains [216]. 
Osteomodulin, chondroadherin, fibromodulin, and PRELP bind 
to C4BP [217]. The major interaction site on C4BP is localized to 
the central core, including CCP8. The binding of osteomodulin, 
fibromodulin, and PRELP to C4BP shows a concentration-
dependent manner and ionic in nature, while the binding of 
C4BP to chondroadherin shows both ionic and hydrophobic 
character. PRELP and osteomodulin have overall basic and 
acidic properties, respectively, which are likely to contribute 
to their binding properties [217]. A cluster of tyrosine sulfate 
residues in the N terminus of fibromodulin contributes the 
anionic character of this SLRP, which may be important for the 
interactions [217]. Being basic, chondroadherin in contrast 
may use hydrophobic patches to bind C4BP as well as clusters 
of charged residues [217].

Heparin-binding proteins: The fibromodulin N-terminal 
domain binds motifs of basic clusters in heparin-binding 
proteins such as basic FGR-2, TSP-1, MMP13, the NC4 domain 
of collagen IX, interleukin-10, and PRELP [121]. Despite 
the differences in the tyrosine sulfate domain, binding to 
osteomodulin was the same as that to the fibromodulin 
tyrosine sulfate domain, with the interesting exception of 
MMP-13 [121]. The binding of the NC4 domain of collagen 
IX to fibromodulin and osteomodulin was also indicated by 
Kalchishkova et al. [218].

Thrombospondin-1 (TSP-1): TSP-1 contains heparin-
binding domain, vWFc, laminin G-like, TSP type 1and 2, and 
the region of basic and acidic residues. Decorin interacts with 
TSP-1, which inhibits cell adhesion to TSP-1 [219,220]. The 
binding sites of decorin to TSP-1 are the GAG chains and the 
core protein [219,220]. Brain-specific angiogenesis inhibitors 
(BAIs) contain 4 to 5 TSP type-1 repeats (TSRs), while RTN4 
(nogo)-receptors contain the LRR domain with nine LRRs. 
The structure of the BAI1 TSR3 domain in complex with RTN4 
receptor revealed that a single TSR domain binds to the LRR 
domain of RTN4 receptor [221]. Thus, we infer that the LRR 
domain as well as the GAG chain participates in the binding 
to TSP-1. 

CD44: The CD44 antigen is a cell-surface glycoprotein 
involved in cell–cell interactions, cell adhesion and migration. 
Biglycan interacts with CD44, which increases M1 autophagy 
[222]. Extracellular secreted asporin binds to CD44 to activate 
Rac1 [223,224]. The GAG chains of biglycan and lumican may 
interact with CD44, because CD44 interacts with the CS side 
chain of Serglycin [225].

https://en.wikipedia.org/wiki/Cell_(biology)
https://en.wikipedia.org/wiki/Glycoprotein
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Arginine clusters in PRELP and opticin

Perlecan: PRELP binds the basement membrane heparan 
sulfate proteoglycan perlecan and collagens [226]. PRELP 
contains Arg/Pro-rich amino acids at the extreme N-terminal 
side, as noted [30,31]. The N-terminal part of PRELP interacts 
with perlecan [226]. 

Heparin and heparan sulfate (HS): PRELP binds heparin 
and HS [227]. This interaction is mediated through the basic 
parts of highly sulfated sequences of heparin and heparan 
sulfate. Opticin binds to type XVIII collagen via its HS chains 
[228]. Opticin binds to heparin, HS, CS, and DS; the binding 
affinity is dependent on sulfation pattern and oligosaccharide 
chain [228]. We infer that the binding site of opticin is the 
arginine clusters of 153-RRTAYLYARFNRISRIR-159. 

Platelet-derived growth factor (PDGF): Decorin binds 
PDGF [229,230]. Extractable pool decorin DS is able to bind 
most probably even in irreversible manner both growth factors 
(PDGF-BB and FGF-2) and fibronectin as judged from very low 
Kd values characterizing all interactions. In turn, biglycan DS 
displays particularly high affinity to FGF-2 [230].

The N-terminal capping region

Zn2+ and Ca2+: Decorin is a Zn2+ metalloprotein [231]. The 
Zn2+-binding sites are localized to the N-terminal domain of 
the core protein that contains 4 Cys residues. This likely results 
in a large conformational change of the N-terminal capping 
structure. The N-terminal polyaspartate domain of asporin 
binds calcium and regulates hydroxyapatite formation in vitro 
[66].

Fibrinogen: Fibrinogen is a glycoprotein complex that 
circulates in the blood of all vertebrates. Decorin binds with 
the globular D domain of fibrinogen in a Zn2+-dependent 
interaction [232,233]. Taken together, the N-terminal capping 
region of decorin likely participates in the interaction with the 
fibrinogen D domain.

Myostatin: Myostatin is a member of the TGF-β protein 
family. Fibromodulin and decorin interact with myostatin 
[234-237]. Fibromodulin, fibronectin and laminin bind to 
myostatin in the presence of Zn2+ with KD = 10−10~10−8 mol/L 
[234]. Fibromodulin shows the highest affinity for myostatin 
among them. Myostatin binding to decorin requires Zn2+ 
binding to the N-terminal capping region of decorin [236,237].

α– and γ– sarcoglycan: The sarcoglycans are a family 
of transmembrane proteins (α, β, γ, δ or ε) involved in the 
protein complex responsible for connecting the muscle 
fiber cytoskeleton to the extracellular matrix. Biglycan binds 
to α– and γ–sarcoglycan but not β– or δ– sarcoglycan [238]. 
The binding sites on the polypeptide core of biglycan for α– 
and γ– sarcoglycan are distinct. α-Sarcoglycan binds to the 

N-terminal cysteine-rich domain of biglycan that forms a 
capping structure [238]. 

Lysyl oxidase (LOX): Lysyl oxidase (LOX) enzymes oxidize 
lysyl and hydroxylysyl residues from collagen and elastin 
chains [239]. Fibromodulin interacts with LOX and acts as a 
modulator of its activity fostering a site-specific cross-linking 
of collagen fibrils [74]. This interaction was mapped to the 
N-terminal 12 amino acids of fibromodulin with no apparent 
effect of tyrosine sulfation of fibromodulin [74]. 

The C-terminal region

CCN2/CTGF: CCN2 is a member of CCN protein family which 
is composed of four distinct domains connected in tandem, 
i.e., IGF-binding protein-like (IGFBP), von Willebrand type 
C, thrombospondin type 1 repeat (TSP-1), and C-terminal 
(CT) domains. Mouse Tsukushi binds to the CT and IGFBP 
domains of CCN2 [83]. Decorin interacts with CCN2 [236,240]. 
The interaction is in a saturable manner with a Kd of 4.4 nM 
and LRRs 10 – 12 are important for the interaction with CCN2 
[240]. A peptide derived from the VS part of LRR12 (ie, Gln335-
Lys359) inhibits CCN2 – decorin complex formation [240]. The 
part maps α-helix in the C-terminal capping structure. Thus, 
we suggest that the C-terminal capping structure participate 
in the interaction with CTGF. 

Wnt-1-induced secreted protein 1 (WISP-1): WISP-1/CCN4 
is a member of the CCN family of growth factors. Decorin and 
biglycan interact directly with WISP-1 [241]. 

Integrin α2β1: The binding site for integrin α2β1 maps 
to an α-helix in the C-terminal heparin binding region of 
chondroadherin (307–CQLRGLRRWLEAK–318) [192], which 
constitutes a part of the C-terminal capping structure. The 
core protein of lumican directly interacts with the I domain of 
α2 integrin subunit in the α2β1 integrin [189].

Heparan sulfate (HS): Chondroadherin contains the clusters 
of lysine or arginine at the very C-terminal side. It consists of 
346-CKFPTKRSKKAGRH-359 [30,31]. The C-terminal part of 
chondroadherin binds to HS chains [242].

Transforming growth factor-β receptor 1 (ALK5): 
Lumican binds to ALK5 [243]. In silico analysis proposed 
that the interaction occurs between the C-terminal 50 
amino acid region (L EKFDIKSFCKILGPLSYSK IKHLRLDGNRI 
SETSLPPDMYECLRV ANEVTLN) of lumican and the GS domain 
of ALK [243]; the lumican C-terminal region comprises a 
capping structure.

Apolipoprotein(a): Apolipoprotein(a) binds via its 
C-terminal domain to the protein core of decorin [244]. The 
binding of Lp(a) to decorin involves both electrostatic and 
hydrophobic interactions.
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Core protein

Microfibril-associated glycoprotein-1 (MAGP-1) and 
fibrillin-1: MAGP-1 with 183 residues contains a disordered 
region in in the central, while fibrillin-1 with 2871 amino acids 
contains 48 EGF-like domains; these proteins are components 
of extracellular microfibrils. Decorin interacts with each protein 
individually and with both proteins together form a ternary 
complex [245]. The decorin core rather than its GAG side chain 
mediates the interaction. MAGP-1 interacts with biglycan but 
not decorin in the solution phase [246]. An EGF-like domain in 
fibrilin-1 might interact with the concave face of decorin.

Tropoelastin: Tropoelastin is the basic building block of elastin 
making up the majority of elastic fibers [247,248]. Tropoelastin 
is the soluble precursor of elastin with a molecular weight of 
about 60 kDa. Biglycan and decorin bind to tropoelastin [246]. 
The binding sites are contained in the protein cores of the 
proteoglycans rather than the GAG side chains [246]. Biglycan 
forms a ternary complex with tropoelastin and MAGP-1 [246]. 
Like hydroxyproline-rich collagen, elastin contains about 
one-third glycine and approximately one-ninth proline, and 
then is characterized by repetitive sequence. Thus, we think 
that elastin and tropoealstin partially adopt a collagen-like 
helix. Thus, tropoelastin adopting a collagen-like helix might 
interact through concave face of biglycan and decorin, as seen 
in the collagen interactions.

Filamin – A: Filamins are a family of actin-binding proteins 
composed of filamin A, B, and C [249]. The LRR region 
of decorin interacts with filamin-A (ABP-280) [250]. This 
interaction is dependent on the 288 carboxyl-terminal amino 
acids of filamin-A, which correspond to repeats 22–24 of its 
conserved β-sheet structure [250]. 

The CXC chemokine KC (CXCL1): CXCL1 that has 
chemotactic activity for neutrophils is a small peptide. CXCL1 
forms homodimer [251,252]. The core proteins from lumican 
and keratocan directly interact with CXCL1 [253].

Smad2/3: Smad2/3 is a transcription factor. Asporin co-
localizes and interacts with smad2/3 via the LRR domain [254]. 
Consequently, asporin facilitates its entry to nucleus, induces 
Epithelial-mesenchymal transition, and promotes cell invasion 
[254].

Tubulin: Tubulin consists of α- and β - subunits. α- and β - 
tubulins polymerize into microtubules, a major component of 
the eukaryotic cytoskeleton. Lumican interacts with tubulin 
[255,256]. The N-terminal part of lumican, and the fragments 
of spanning LRR1-LRP4, LRR5-LRR7 and LRP8-LRR10 are co-
localized with microtubule [256]. Lumican core proteins 
interact with tubulins. Taken together, we infer that the 
binding sites might be the concave face of the LRR domain.

Resistin: Resistin is a cysteine-rich peptide hormone derived 

from adipose tissue [257]. Decorin lacking the glycation site 
binds to resistin [257]. This suggests that the decorin core 
protein interacts with resistin. 

Covalent interaction

Aggrecan (Chondroitin sulfate proteoglycan 1): The 
aggrecan core protein is depicted with three disulphide 
bonded globular domains (G1-3), an interglobular domain 
(IGD), and attachment regions for keratan sulphate (KS) and 
chondroitin sulphate (CS1 and CS2). Aggrecan participates in 
covalent and nonreducible interactions with lumican in this 
high-molecular weight complex in the aging human sclera 
[258]. Theoretical model shows that lumican is covalently 
linked to the aggrecan through both disulfide bonding and 
the transglutaminase linkage of Gln-Lys (Q-K) [258]. 

Heat shock protein 47 (Hsp47): A collagen-specific 
molecular chaperon, Hsp47 of chicken directly interacts 
with decorin, lumican, and fibromodulin [259]. In the case of 
decorin and lumican, the interactions occur in intracellular 
locations, suggesting Hsp47 binds non-glycosylated SLRPs.

Unknown binding sites

SOX2 is a transcription factor that is essential for maintaining 
self-renewal or pluripotency of undifferentiated embryonic 
stem cells [260]. Tsukushi interacts with Sox2 and BMP-4 which 
controls stereocilia formation in the inner hair cells [92]. Delta 
protein from African clawed frog mediates segmentation 
of the paraxial mesoderm in Xenopus embryos [261]. It 
is 721 residues long and contains four EGF-like domains 
(UniProtKB: Q91902). Tsukushi interacts with Delta [83]. Fas 
ligand (FasL/CD95L) is a type-II transmembrane protein that 
belongs to the TNF family. Lumican has been suggested 
to bind FasL/CD95L [262]. Frizzled is a family of atypical G 
protein-coupled receptors that serve as receptors in the 
Wnt signaling pathway and other signaling pathways. Chick 
Tsukushi directly binds to the cysteine-rich domain of frizzled 
4 with an affinity of 2.3 × 10−10 M and competing with Wnt2b 
[263]. Tsukushi also binds to frizzled 3 [264]. Wnt proteins are 
secreted glycoproteins that activate different intracellular 
signal transduction pathways. Podocan directly interacts 
with Wnt4 [265]. The receptor muscle-specific kinase (MUSK) 
is indispensable for nerve-muscle synapse formation and 
maintenance [266]. Biglycan directly binds the ectodomain of 
mouse MuSK [266]. Both the Ig and Frizzled (CRD/Fz) domains 
of MuSK are required for biglycan binding. 26S proteasome 
non-ATPase regulatory subunit 2 (PSMD2) is a component of 
the 26S proteasome, a multiprotein complex involved in the 
ATP-dependent degradation of ubiquitinated proteins [267]. 
Asporin strongly interacts with PSMD2 in gastric cancer (GC) 
cells [267]. Endostatin is a proteolytically released fragment of 
the C-terminal domain NC1 of collagen XVIII [263]. Endostatin 
binds biglycan and LDL [268]. Endostatin and biglycan 
interact with each other directly [268]. The crystal structure 

https://www.uniprot.org/taxonomy/8355
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of endostatin reveals a globular form [269]. The LRR domain 
of biglycan might interact with endostatin. p120 catenin 
regulates cell-cell adhesion with cadherins. Lumican interacts 
with nuclear p120 catenin [253,270]. Opticin binds retinal 
growth hormone in the embryonic vitreous [271]. Nyctalopin 
is located on the surface of photoreceptor-to-ON bipolar cell 
synapse in the retina [272]. Nyctalopin interacts directly with 
transient receptor potential cation channel subfamily member 
1 (TRPM1) [273,274] and additionally with glutamate receptor 
mGluR6 [274]. Nyctalopin forms complexes with both TRPM1 
and mGluR6 [274].

Discussion

The concave face, the ascending loop, the N- or C-terminal 
capping regions, the GAG chains, and/or sulfated tyrosine 
residues are involved in protein, protein interactions. Their 
combinations were shown or predicted. In contrast, the 
descending lateral face and the convex face were not observed 
in their interactions.

The structures of the EGF – EGFR complex (PDB:ID 3NJP and 
1IVO) [275,276] are available. In addition, the structures of the 
IGF-1 – IGF1R and IGF-2 – IGF1R complexes (PDB:ID 5U8Q, 
7S0Q, 6PYH, and 6VWI) have been determined [277-280]. To 
characterize the spatial arrangement of the two L-domains 
in EGFR and IGF-1R, Miyashita et al., [144] proposed two 
parameters of the distance between the two L domains (L) 
and the angle between the two axes showing the direction 
of the β-sheet stacking of the LRRs in the L domains (Ψ). The 
structural two parameters (L and Ψ) of their complexes in both 
the free state and the complexed state demonstrate that the 
EGF binding to EGFR and the IGF-1 or IGF-2 binding to IGF1R 
bring about large structural changes. Thus, we infer that 
similar structural changes occur in interactions between SLRPs 
(decorin, biglycan, asporin and PRELP) and EGFR or IGF1R.

The functions of SLRPs including decorin, biglycan and 
lumican are known to be altered in human diseases, such as 
cancers [16,281]. Lumican - derived peptides that interact 
MMP-14 inhibit melanoma cell growth and migration [236]. 
Decorin – derived peptide that interacts with CCN2 inhibits 
its biological activity [240]. Therefore, it would be significant 
to discuss the possibilities of blocking disease-related SLRP-
ligand interactions as a targeted therapy. Drug delivery 
systems might be useful [282,283]. 

Conclusion

We undertook a comprehensive literature search of 
publications in order to make a list of ligands of all members 
of SLRPs. We discussed the interacting sites of SLRPs to the 
binding partners. The protein-ligand interactions occur on 
not only the concave face but also the ascending face and the 
N- or C- terminal capping regions. In addition, the extreme 
N- and/or C-terminal regions with the GAG chains or sulfated 
tyrosine residues participate in ligand-interaction.
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