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Commentary

Diabetic kidney disease (DKD) is a common complication 
of diabetes [1], characterized by kidney damage. Podocytes 
are specialized, terminally differentiated cells in the kidney’s 
filtration barrier that are key responders to the metabolic and 
environmental changes that occur in diabetes. Change in the 
function and in the number of podocytes is the main signature 
of the development and progression of DKD. However, the 
exact causes of podocyte injury and detachment in DKD 
are not fully understood. Recent research has shed light on 
the intricate role that sphingolipid metabolism may play 
in podocyte injury and its relevance to DKD progression, as 
discussed in this commentary.

Sphingolipids belong to a large class of lipid molecules 
which are involved in various cellular processes, including 
cell membrane structure, cell signaling and proliferation, 
inflammation, oxidative stress, or apoptosis. The 
most critical role sphingolipids play is in the lipid raft 
domains, the sphingomyelin-, cholesterol- and glycosyl-
phosphatidylinositol (GPI)-rich microdomains of the plasma 
membrane. The slit diaphragm of podocytes is a specialized 
structure that resembles a lipid raft and organized into a 
complex network of transmembrane proteins such as nephrin, 
podocin, alpha-actinin-4, signaling adaptors CD2AP and ion 
channels like TRPC6. The proper localization and function 
of slit diaphragm proteins depend largely on bioactive 
sphingolipids. Changes in the sphingolipid composition of 

lipid raft domains affect the biophysical properties of the cell 
plasma membrane, leading to changes in signaling properties 
and further podocyte injury (Reviewed in [2]). Ceramide, 
ceramide-1-phosphate (C1P), sphingosine-1-phosphate 
(S1P), glycosphingolipids (particularly, gangliosides) and 
galactosylceramides (GalCer) are the main sphingolipid 
metabolites that have been considered as bioactive signaling 
sphingolipids in podocytes (Figure 1).

It is important to note that hyperglycemia is the key 
determinant of podocyte injury in diabetes. Therefore, high 
glucose levels significantly contribute to disturbance in 
sphingolipid metabolism. Thus, excessive glucose has been 
shown to increase glycosphingolipid production by elevating 
the availability of ceramide [3]. Another study demonstrated 
that elevated levels of advanced glycation end-products 
lead to increased levels of gangliosides in renal cells [4]. 
Ceramides have also been implicated in insulin resistance 
via interfering with glucose uptake and impaired storage 
of glycogen or triglycerides (Reviewed in [5]). Increased 
production of ceramides is linked to elevated activity of serine 
palmitoyltransferase, the de novo ceramide synthesis pathway 
enzyme, in the presence of high glucose levels [6], while 
decreased activity of acid ceramidase, an enzyme responsible 
for degradation of ceramide, has been also reported in the 
hyperglycemia conditions in association with increased 
inflammatory response [7].

The knowledge about podocyte sphingolipid metabolism 
under physiological and pathophysiological conditions is 
scarce.  Recent experimental studies however suggest that 
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decreased levels of long- (C14:0, C16:0, C18:0) and very-long- 
(C24:0, C24:1) chain ceramide species in mice kidney cortices are 
associated with altered genes expression involved in ceramide 
synthesis and metabolism [8-10], while human studies suggest 
an inverse correlation between ceramide long- (C16:0) and 
very-long- (C24:0) chain species in plasma and kidney cortex 
[11] and elevated urinary ceramide species [12]. Ceramide 
accumulation in glomeruli mice with DKD is also associated 
with expression of junctional adhesion molecule-like protein 
(JAML) [13]. Importantly, not only ceramide synthesized 
via de novo pathway are toxic to podocytes, but ceramides 
produced by the action of ceramidases or sphingomyelinases 
have also been shown to be equally toxic. Thus, podocyte-
specific acid ceramidase 1 (Asah1) deletion in mice leads 
to increased glomerular ceramide levels and development 
of nephrotic syndrome [14], which is ameliorated by the 
deletion of acid sphingomyelinase (Smpd1) gene [15]. Asah1 
has also been shown to play an important role in podocyte 
injury by promoting nicotine adenine dinucleotide phosphate 
(NADPH) oxidase associated oxidative stress [16], suggesting 
an existence of a crosstalk between sphingolipids and NADPH 
oxidase signaling (as reviewed in [17]). However, many aspects 
of the role of ceramide metabolism in the podocyte remain 

to be discovered. One of the most important questions to 
be answered is the role of different ceramide species in 
DKD development, as short-chain ceramides are generally 
associated with pro-survival and anti-inflammatory effects, 
while long-chain ceramides are often linked to inflammation 
and apoptosis. 

Ceramide can be further catabolized into sphingosine, which 
is then phosphorylated into S1P, a bioactive sphingolipid that 
has gained a lot of attention in recent years. Very often, S1P and 
ceramide antagonistically signal cell survival or death largely 
via shared mediators, and both can directly inhibit each other’s 
synthesis. S1P primarily acts as a ligand for high-affinity five 
cell-surface receptors (S1Pr1-S1Pr5). However, its intracellular 
actions may also possess signaling potential, despite the fact 
that its direct targets remain elusive and controversial [18]. 
Loss of S1P lyase, an enzyme that degrades S1P, has been 
shown to be associated with nephrotic syndrome [19,20]. 
In podocytes, this loss resulted in a reduction of nephrin, an 
important protein of a slit diaphragm, via a protein kinase 
C δ-dependent mechanism [21]. Additionally, the levels of 
sphingosine kinase, an enzyme that catalyzes S1P formation, 
are increased in DKD, leading to increased renal S1P levels as 

 
  

Figure 1. Sphingolipid metabolism dysregulation in podocytes in DKD. Increased activity of serine palmytioltransferase long chain 
subunit 2 (SPTLC2) and decreased activity of desaturase 2 (DEGS2) in the de novo sphingolipid pathway leads to the accumulation of 
dihydroceramides (DH-Cer), which causes reactive oxygen species (ROS) accumulation. In turn, decreased activity of sphingosine-1-phosphate 
lyase 1 (SGPL1) results in the accumulation of sphingosine-1-phosphate (S1P), which contributes to disturbance in all intracellular processes. 
Disturbance of sphingolipid composition at the plasma membrane due to increased activity of alkaline ceramidase 2 (ACER2) increases 
levels of sphingosine (Sph), which, together with increased activity of sphingosine kinases 1 and 2 (SPHK1/2), leads to increased production 
of S1P. Overproduction of S1P results in increased S1P efflux via S1P transporters (S1PTs). Further, effluxed S1P acts as a paracrine factor and 
activates S1P receptors (S1PRs), which may also contribute to apoptosis. Overexpression of sphingomyelin phosphodiesterase acid-like 3b 
(SMPDL3b) blocks ceramide kinase (CERK) activity and results in decreased ceramide to ceramide-1-phosphate (C1P) production. However, 
accumulation of ganglioside GM3 due to sphingolipid metabolism disturbance results in nephrin stabilization at the plasma membrane. This 
image was created using BioRender software (www.biorender.com).
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shown in rodent models [22,23] and in patients with DKD [9,22]. 
Abnormalities in S1P receptors expression also contribute to 
DKD progression (Figure 1), where S1P signaling mediated 
by S1Pr2 is shown to be toxic to cells, while S1Pr1 signaling 
has a protective role [24]. While significant progress has been 
made in understanding S1P signaling in podocytes, several 
questions remain unanswered. The relative contribution of 
intracellular and extracellular S1P remains to be established. 
Furthermore, the relative expression and activation of S1P 
receptors in podocytes during DKD, and the downstream 
signaling pathways involved, remain largely unexplored. 
Finally, it also remains unclear what the intracellular resources 
of S1P are in the podocyte, as well as how S1P transport and 
distribution occurs within the cell. Elucidating S1P crosstalk 
with other signaling pathways, such as renin-angiotensin 
system, oxidative stress, or inflammation-related pathways, 
needs further investigation and may lead to the development 
of targeted therapeutic intervention.

Ceramide can also be phosphorylated into C1P by ceramide 
kinase (CERK), another bioactive sphingolipid involved in 
diverse intracellular processes including survival, proliferation, 
migration through an unknown receptor-initiated signaling 
or inflammation. The function of C1P in the podocyte remains 
largely unknown. We recently demonstrated decreased 
levels of C1P in kidney cortices of mice with DKD [8]. This 
was associated with increased expression of sphingomyelin 
phosphodiesterase acid-like 3b (SMPDL3b), an enzyme of 
the sphingolipid pathway that modulates insulin receptor 
signaling and that regulates C1P availability in podocytes via 
interfering with CERK expression [25]. Given the fact that C1P 
is heavily involved in the cellular processes, as shown in other 
cell types, its role in podocytes remains largely unknown and 
requires further investigation.

In addition, the role of glucosylceramides 
(glucosylcerebrosides, lactocylceramides and gangliosides) 
in podocyte biology and in DKD has recently gained some 
attention. Thus, glucosylceramide C18:0 is increased in 
plasma of mouse models of DKD, while glucosylceramide 
C16:0 is decreased in the DKD kidney [10]. In previous 
studies, ganglioside GM3, the most abundant sphingolipid 
in podocytes, has been found to be up-regulated in DKD 
and implicated in insulin resistance [26], while a recent study 
demonstrated that increased GM3 levels stabilize nephrin and 
prevent podocyte loss and albuminuria [27]. Increased levels 
of hexocyl-, glucosyl-, galactosyl- and lactosylceramides were 
observed in kidney cortices of mouse model of DKD [3]. Another 
study reported an association between hexosylceramide C18:1 
and DKD, while very-long-chain lactosylceramide species are 
associated with microalbuminuria development in patients 
with type 1 diabetes [28].

Understanding the intra- or extracellular factors that drive 
sphingolipid pathophysiology in podocytes, as well as the 

contribution of specific sphingolipid species to podocyte 
physiology and pathophysiology is likely to result in the 
development of novel diagnostic biomarkers and novel 
therapeutic opportunities. Numerous studies have investigated 
the potential of sphingolipids as diagnostic biomarkers for 
DKD. These studies have identified specific changes in the 
levels of sphingolipids in the blood or urine of DKD patients 
compared to individuals without DKD or with other types of 
kidney disease. For example, recent research has established 
links between urinary ceramides and the various stages of 
diabetic nephropathy. In this study, certain ceramides such as 
Cer d18:1/16:0, Cer d18:1/18:0, Cer d18:1/20:0, Cer d18:1/22:0, 
and Cer d18:1/24:0 were found to be elevated in patients 
with stage 3 of diabetic nephropathy. Furthermore, the levels 
of these ceramides in urine were positively associated with 
urinary clinical biomarkers such as albumin and N‐acetyl‐β‐d‐
glucosaminidase, as well as the sediment score [12]. In addition, 
a clinical study demonstrated increased levels of C16 and C18 
ceramides in the plasma of patients with type 2 diabetes (T2D) 
[29]. Similarly, elevated levels of C16 and C18 ceramides were 
found in the urine of DKD patients, and these levels were 
correlated with urinary biomarkers such as albumin [10]. 
Conversely, another study revealed that lower plasma levels of 
very long chain ceramide species (C20–C26) were associated 
with the progression of proteinuria in DKD [30]. These findings 
indicate that sphingolipids, particularly ceramides, may 
not only serve as diagnostic biomarkers for DKD but also as 
indicators of disease progression and prognosis. In addition to 
their potential as diagnostic biomarkers, the identification of 
sphingolipids as key players in DKD has led to the exploration of 
sphingolipid-targeted therapeutic interventions. Activation of 
sphingosine-1-phosphate receptor 1 (S1P1R) has been shown 
to have protective effects on renal function and histology 
in an STZ-induced diabetic rat model [31]. Furthermore, we 
have previously demonstrated that supplementation with 
exogenous C1P may represent a lipid therapeutic strategy to 
treat DKD [8]. However, further research is needed to better 
understand the complex sphingolipid signaling network 
and validate the efficacy and safety of sphingolipid-targeted 
therapies in clinical settings.

Therefore, our rudimentary understanding of the role of 
sphingolipid metabolism in podocytes in health and disease 
is expanding and paves the way for further investigations. 
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