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F-ATP Synthase Inhibitory Factor 1 Regulates the 
Permeability Transition Pore

Mitochondrial permeability transition is a Ca2+-dependent 
increase of the inner membrane permeability mediated by the 
permeability transition pore (PTP) [1]. The molecular nature of 
PTP is a century mystery that remains contentious [2]. In the 
past decade, overwhelming evidences highlight that F-ATP 
synthase is a key component of PTP [3-14]. Cyclophilin D 
(CyPD) acts as the receptor for cyclosporin A (CsA), which is a 
well-known PTP inhibitor [15-19]. The binding of CyPD to PTP 
favors opening of the pore, and mitochondria devoid of CyPD 
or in presence of CsA become resistant to PTP inducers [19-21]. 
CyPD associates with F-ATP synthase through the lateral stalk 
of the complex including the oligomycin sensitivity conferral 
protein (OSCP) [4,22]. The most recent working model of PTP is 

that the conformational change upon Ca2+ binding to catalytic 
core is transmitted to subunit e and c-ring through subunits b 
and g via OSCP [1,7,13,14,23-27]. 

The p53 tumor suppressor, a well-known transcription factor 
induced by DNA damage and oxidative stress, is termed as 
the guardian of the genome [28]. p53 regulates a variety of 
key processes such as cell cycle arrest, DNA repair, apoptosis, 
senescence, and metabolism [29]. p53, a central stress sensor 
to multiple insults, is translocated to mitochondria in response 
to oxidative stress [30]. p53 protein can promote mitochondrial 
membrane permeabilization by direct activation of Bax and 
induce apoptosis [31,32]. Mitochondrial matrix p53 interacts 
with OSCP subunit and promotes the assembly of F-ATP 
synthase [33]. The PTP-regulatory activity of p53 in response 
to oxidative stress is CyPD dependent, and a robust p53-CypD 
complex formation triggers PTP opening during necrosis [30]. 
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F-ATP synthase inhibitory factor 1 (IF1) is a regulatory subunit 
of F-ATP synthase, and the binding of IF1 to the enzyme 
depends on the matrix pH [34-36]. IF1 dimerizes at acidic pH 
where it is active and forms tetramer at alkaline pH where 
its inhibitory region is masked [37]. The active IF1 stabilizes 
the dimers of F-ATP synthase through F1-F1 bridging [38]. 
Overexpression of IF1 promotes the dimerization of F-ATP 
synthase and increases the density of mitochondrial cristae 
[39,40]. We have recently reported that IF1 regulates the PTP via 
interaction with the p53-CyPD complex [41]. Overexpression 
of IF1 activated caspase 3 and sensitized the pore to Ca2+, 
which was suppressed by CsA, while disruption of IF1 inhibited 
PTP opening and prevented cell death induced by oxidative 
stress [41]. The interaction of p53 with OSCP subunit via p53-
CypD axis plays an important role in its tumor suppression 
activity, and p53-CypD complex is essential for opening of the 
PTP under oxidative stress [30,33]. The inducing effect of IF1 
overexpression on PTP was abrogated by ablation of CyPD, 
and IF1 could interact with p53-CyPD complex, suggesting 
that IF1 facilitated PTP opening via p53-CyPD [41]. IF1 binding 
to p53-CyPD complex may cause a conformational change 
that transmitted to the inner membrane via OSCP subunit 
and eventually PTP formation [41]. However, the interaction 
between IF1 and p53-CyPD complex is direct or indirect and 
how they bind to each other await further studies.

F-ATP Synthase Inhibitory Factor 1 Regulates 
Metabolic Reprogramming

Mitochondria, known as “powerhouses of the cell”, 
generate ATP to drive energetically dynamical life processes. 
Mitochondrial dysfunction results in the decline of the 
mitochondrial membrane potential (Δψm), such as limitation 
of substrate or oxygen availability, impaired oxidative 
phosphorylation (OXPHOS), the activation of uncoupling 
proteins, or a leak of protons into the matrix through the PTP 
[42]. The underlying mechanism of Warburg effect is proposed 
to be impaired mitochondria, which forces metabolic 
reprogramming towards aerobic glycolysis [43]. Long-lasting 
openings of the PTP cause rupture of the outer membrane, 
mitochondrial depolarization, and loss of ATP production [44]. 
Depending on the open state, PTP is involved in metabolic 
plasticity, reprogramming and cell death [43]. 

The compromised mitochondrial function and the decline of 
Δψm lead to the reverse of F-ATP synthase, hydrolyzing ATP to 
pump protons out from the matrix [42]. In presence of proton 
motive force, the bound IF1 releases from F-ATP synthase 
and ATP synthesis recover, thus, IF1 plays a role in preventing 
futile ATP hydrolysis [45]. IF1 is upregulated in a variety of 
carcinomas and acts as a main driver of metabolic switch to 
a Warburg phenotype [46]. IF1 binding to p53-CyPD complex 
promotes opening of the PTP, and this finding may provide an 
alternative mechanism through which IF1 regulates metabolic 
reprogramming [41]. The relative IF1 expression level to 

F-ATP synthase varies between tissues and cell types, which 
may contribute to heterogeneous metabolic phenotypes of 
tumors [39,43]. Therefore, to elucidate the factors that dictate 
IF1 expression in different cell types or tissues is a critical 
issue. The expression of F-ATP synthase is regulated at both 
the transcriptional and post-transcriptional levels [47-49]. Our 
unpublished data suggested that the interaction of IF1 with 
transcription factors c-Myc and PGC1α might be involved in 
IF1-regulatory metabolic reprogramming. However, whether 
c-Myc and PGC1α could regulate IF1 expression awaits further 
investigation.

Role of the Permeability Transition Pore in Metabolic 
Reprogramming

Metabolic plasticity and reprogramming allow cancer cells to 
cope with different environments and treatments, increasing 
adaptability and developing chemoresistance [43]. ROS is 
critical to promote the tumor phenotype by regulation of 
oncogenic signaling and cellular metabolism, and metabolic 
deregulations lead to drug resistance [50]. Cytosolic Ca2+ 
activates several Ca2+-binding proteins that directly regulate 
many enzymes, transportome function, and gene expression 
[51]. Mitochondrial Ca2+ modulates mitochondrial energy 
machinery by activation of mitochondrial dehydrogenase 
enzymes and regulation of ETC function [51]. Ca2+ and ROS 
mutually influence each other, Ca2+ signaling is crucial for 
the generation of ROS while ROS regulate the activity of Ca2+ 
channels and transporters [52]. Transient opening of the 
PTP contributes to physiological Ca2+ and ROS homeostasis, 
indicating the role of PTP in regulation of metabolic 
reprogramming [43]. The discovery that the PTP forms from 
F-ATP synthase and the signaling pathways affecting its 
transition from an energy-conserving to an energy-dissipating 
device provide new therapeutic perspectives for carcinomas 
[53].

IF1-mediated inhibition of F-ATP synthase enhances the 
production of mitochondrial ROS [54]. IF1 is upregulated in 
some phenotypes of cancer resulting in an increase of ROS 
level, which activates pro-survival pathways and triggers 
proliferative response [40]. IF1 overexpression favors opening 
of the PTP involving in its interaction with p53-CyPD complex 
[41]. The production of ROS induced by IF1 overexpression 
further enhances the activity of PTP. In response to metabolic 
stress, p53 is activated to regulate metabolic pathways and 
to promote cell survival [55]. Mitochondrial ROS has been 
found to be an important component of the stress-induced 
activation of p53 [55]. After activation, p53 translocation to 
mitochondria may promote the flickering activity of PTP and 
contribute to metabolic reprogramming [41,43].

The peroxisome proliferator-activated receptor gamma 
coactivator 1-alpha (PGC1α) synchronizes the mitochondrial 
and nuclear genomes and coordinates mitochondrial 
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biogenesis [56,57]. Activation of PGC1α promotes OXPHOS in 
a transcription-dependent manner [58]. PGC1α plays a crucial 
role in regulating metabolic balance and chemoresistance, 
contributing to cancer progression [59]. The MYC/PGC1α 
balance acts as the main determinant for metabolic phenotype 
and plasticity in resistant cancer stem cells [60]. PGC1α can 
be translocated to mitochondria [61] and its binding to 
mitochondrial p53 regulates p53 transactivation of metabolic 
genes [62]. PGC-1α expression is induced by ROS, which in turn 
regulates mitochondrial biogenesis and activity [63]. PGC-1α 
is also co-induced with several key ROS-detoxifying enzymes 
under oxidative stress and acts as a broad and powerful 
regulator of ROS metabolism [64]. Whether PGC-1α regulates 
PTP activity and its role in metabolic reprogramming await 
further investigations.

Conclusions and Perspectives

We have recently reported that IF1 interacts with p53-CyPD 
complex and facilitates opening of the PTP, and IF1 is required 
for the formation of p53-CyPD complex. We propose that 
IF1 binding to p53-CyPD complex induces a conformational 
change transmitted to the inner membrane subunits via OSCP 
subunit and eventually PTP formation. As an intrinsic inhibitor 
of F-ATP synthase, IF1 has been well characterized to be a main 
driver of metabolic switch to a Warburg phenotype. The PTP-
regulatory activity of IF1 provides a clue that IF1 may participate 
in maintenance of Ca2+/ROS homeostasis by regulating PTP 

opening, contributing to metabolic reprogramming (Figure 
1). IF1-mediated inhibition of F-ATP synthase enhances the 
production of mitochondrial ROS, and ROS mediates the 
expressions of oncogenes and transcription factors like MYC/
PGC1α mediating metabolic plasticity (Figure 1). The function 
of IF1 extends beyond that envisaged in literature, and we still 
have a great deal to learn about this fascinating little protein.

Funding

This work was sponsored by Shanghai Sailing Program 
(20YF1453200).

Conflicts of Interest

The author declares no conflict of interest.

References

1. Giorgio V, Guo L, Bassot C, Petronilli V, Bernardi P. Calcium and 
regulation of the mitochondrial permeability transition. Cell Calcium. 
2018 Mar 1;70:56-63.

2. Bernardi P, Carraro M, Lippe G. The mitochondrial permeability 
transition: Recent progress and open questions. The FEBS Journal. 
2022 Nov;289(22):7051-74.

3. Alavian KN, Beutner G, Lazrove E, Sacchetti S, Park HA, Licznerski 
P, et al. An uncoupling channel within the c-subunit ring of the 
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permeability transition pore; CyPD: Cyclophilin D; ROS: reactive oxygen species; TFs: transcription factors.
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