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Introduction

Aortic Aneurysms are defined as localized, full-thickness 
dilation of the aorta related to regional weaking of the wall 
structure [1,2]. They can be classified into three sub-types based 
on location along the aorta: ascending aortic aneurysm (AA), 
descending thoracic aortic aneurysm (dTAA), or abdominal 
aortic aneurysm (AAA) [3]. Thoracic aortic aneurysms (AA and 
dTAA) are more likely to develop due to genetic syndromes 
(such as Marfans, Loey Dietz, or Ehlers-Danlos) or genetic 
predisposition (Bicuspid Aortic Valve or familial Thoracic Aortic 
Aneurysm and Dissection) and are more prone to dissection 
[2,4,5]. AAAs, however, are more likely to develop due to local 
hemodynamic patterns and associated wall stress [6]. Other 
risk factors, such as history of smoking, biological sex, age, and 
family history, have also been implicated in the development 
of AAAs [2,4]. Smoking in particular is associated with larger 
aneurysm size at diagnosis as well as a higher risk of aneurysm 
progression [7-10]. 

The natural history of AAAs is that of slow progression of 

size and ultimate rupture [5,11,12]. In contrast to thoracic 
aortic aneurysms, AAAs are more likely to have spontaneous 
rupture which carries an 80-90% mortality rate and accounts 
for approximately 13,000-15,000 deaths per year in the United 
States [2,4]. The risk of AAA rupture is directly related to the 
maximal aortic dilation with an estimated annual risk of rupture 
of 1% for AAAs greater than 5 cm in diameter and up to 30% for 
AAAs that exceed 8 cm in diameter [1,2,13]. Current guidelines 
recommend repair, either surgically or endovascularly, for 
AAAs with an aortic diameter of 5.5 cm for men and 5.0 cm 
in women in order to balance the risk of intervention with the 
risk of rupture [1,2,6,13]. However, AAAs may rupture at sizes 
smaller from currently unknown mechanisms [2,4]. Screening 
recommendations and improvements in imaging technology 
have helped increase detection of early-stage AAAs. Yet, in 
the absence of effective medical therapy, patients diagnosed 
with small AAAs must wait to undergo intervention until 
the aforementioned size criteria is met and are subjected to 
continuous monitoring and surveillance [14]. 

Despite an ever-growing body of research, the mechanisms 
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that contribute to AAA progression and rupture remain poorly 
understood and, as such, there is currently no standard for 
medical management of small AAAs or for AAAs in patients 
unable to undergo intervention [1,2,15]. Current strategies 
include treatment of hypertension, optimal lipid control, 
and smoking cessation. However, these are generally seen 
as strategies to improve overall cardiovascular health and 
are not specifically targeted at AAA disease [15]. Elective and 
emergent AAA interventions account for more than 15,000 
surgical procedures annually, thereby placing a large burden 
on our current health care system [2,4,16-19]. Medical therapy 
could help stabilize small diameter aneurysms and prevent 
or reduce the need for surgical repair. Additionally, it could 
serve as definitive therapy in patients considered high risk for 
surgical repair [1]. 

The main pathological driving factors of aortic aneurysm 
formation include infiltration of the vessel wall by 
inflammatory cells (lymphocytes, macrophages), destruction 
of elastin and collagen resulting from metalloproteinases, 
loss of smooth muscle cells, increased activation of pro-
inflammatory cytokines, augmented oxidative tissue damage, 
and neovascularization [2,20,21]. From these, common 
themes appear including increased inflammation and altered 
extracellular matrix metabolism [11]. Interleukin-1 (IL-1) has 
been demonstrated to play a key role in vascular inflammation, 
including AAAs. In this review, we will discuss the role of IL-1 
signaling in AAA disease and how inhibition, through genetic 
and pharmacological means, has demonstrated IL-1 to be a 
promising pathway for the medical treatment of AAA disease. 

Interleukin-1α and 1β

IL-1 is an inflammatory cytokine with diverse physiologic 
and pathologic effects and plays an important role in both 
health and disease [22]. IL-1 is known as a master regulator 
of inflammation, controlling a variety of innate immune 
processes, such as mediating fever response [23,24]. IL-1 
is expressed in a wide range of tissues and cells including 
macrophages in the thymus, bone marrow, lung, and liver as 
well as neutrophils, keratinocytes, endothelial cells, smooth 
muscle cells, and fibroblasts [22]. Today, there are 11 total 
recognized members of the IL-1 family each with similar or 
distinct biological effects [22]. 

IL-1 was first isolated from human monocytes and neutrophils 
and described as “acidic and neutral human pyrogens”, 
collectively called “Interleukin 1”. It was ten years before these 
proteins were identified as being distinct at the amino acid 
level and were subsequently renamed IL-1α and IL-1β [25]. 
IL-1α and IL-1β are encoded by different genes that bind 
to the same receptor (IL-1R) to activate a proinflammatory 
pathway [26]. While they share only 24% of their amino acid 
sequence, they are indistinguishable in terms of their biologic 
function [22,27-29]. However, the factors that control their 
functional maturation and bioavailability are highly dissimilar 

and differences between their cellular source, maturation 
requirements, and release impact their role in inflammation 
[25,26].

IL-1α is constitutively expressed by many cell types in 
healthy tissues at a steady state. For example, barrier cells, 
such as endothelial and epithelial cells, express substantial 
amounts of IL-1α during steady state [28,30,31]. However, its 
expression can be increased in response to growth factors and 
pro-inflammatory/stress-associated stimuli such as oxidative 
stress, lipid overload, hormonal stimulation, and exposure 
to cytokines (including IL-1β and IL-1α itself ) [25]. IL-1α is a 
primarily membrane anchored protein, however, it functions 
as both a secreted and as a membrane-bound cytokine and 
signals through autocrine or juxtracrine mechanisms [29,32].

Conversely, IL-1β is not constitutively expresses and is 
absent in cells at homeostasis. IL-1β mRNA is expressed upon 
activation only in cells of hematopoietic origin and requires 
an additional signal including microbial products or other 
cytokines including IL-18, TNFα , IL-1α or IL-1β itself [26,30]. 
The major sources of IL-1β secretion include macrophages, 
monocytes, dendritic cells, B lymphocytes, neutrophils, and 
natural killer cells [24,33]. In contrast to IL-1α, IL-1β is a secreted 
protein and exerts its effects in a largely paracrine or systemic 
mechanism [29]. 

Both IL-1α and IL-1β are produced in pro-forms (pro-IL1α 
and pro-IL1β) and are later cleaved through various activation 
processes. Whereas only the cleaved form of IL-1β is functional, 
both pro-IL1α and the cleaved form of IL-1α are biologically 
active and activate the IL-1 receptor-1 (IL-1R1) with identical 
biological activities [34]. 

IL-1 Signaling 

IL-1 induces the mRNA expression of hundreds of genes 
in multiple different cell types including macrophages, 
endothelial cells, and fibroblasts [29]. Additionally, IL-1 also 
stimulates its own gene expression in a positive feedback loop 
that amplifies the IL-1 response in an autocrine and paracrine 
manner [22,29]. This loop of sustained, self-perpetuating 
inflammation results in extensive tissue damage that occurs 
until IL-1 signaling is either exhausted or suppressed [25]. 
Although the regulation and effects of IL-1β have been 
extensively studied, most aspects of IL-1α biogenesis and 
function in the inflammatory process remain largely unknown 
[30,31,33,35]. As this review is primarily focused on IL-1β as it 
relates to AAA disease, we will focus on the specifics on IL-1β 
signaling.

IL-1β signaling begins with the synthesis of the biological 
inactive IL-1β precursor, pro-IL-1, by nuclear factor kappa B 
(NF-κB) binding to transcribe the IL-1β gene [36,37]. Pro-IL-
1β is then processed into mature, biologically active IL-1β by 
caspase-1 activated by the inflammasome [38]. However, IL-
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1β can also be processed by other serine proteases such as 
elastase, chymases, granzyme A, cathepsin G, and proteinase-3 
[39]. 

IL-1β acts primarily on IL-1R1 expressed by T-lymphocytes, 
fibroblasts, epithelial cells, and endothelial cells. After IL-
1β binding, IL-1R1 forms a heterodimer with IL-1R3 and is 
accompanied by the IL-1 receptor accessory protein (IL-
1RAcP) [40]. The adaptor IL-1 receptor associated kinase 
(IRAK) and myeloid differentiation primary repones protein 
88 (MyD88) are recruited to this complex to form a stable IL-
1-induced first signaling molecule [22,29,41]. This complex 
will go on to activate NF-κB which will lead to the expression 
of IL-1 responsive genes including IL-6, IL-8, monocyte 
chemoattractant protein 1 (MCP-1) and cyclooxygenase 2 
(COX2) [29]. 

A second IL-1 receptor, IL-1 receptor-2 (IL-1R2), exists largely 
as a decoy receptor and is thought to reduce the biological 
response to IL-1β as it does not contain a signaling-competent 
cystolic portion [22,29]. Expression levels of IL-1R1 and IL-1R2 
are different among different cell types with IL-1R2 being 
primarily expressed on neutrophils, B-lymphocytes, and 
bone marrow cells. As a result, these cells often require a 
much high concentration of IL-1β for activation. Conversely, 
endothelial cells predominately express IL-1R1 and require 
low concentrations of IL-1β for activation [42,43]. To further 
highlight their signaling differences, IL-1α has a higher affinity 
for IL-1R1 while IL-1β has been demonstrated to have a higher 
affinity for the decoy receptor IL-1R2 [24,33]. 

IL-1 Signaling in AAA Disease 

IL-1 signaling has long been proposed as a key inflammatory 
mechanism for AAA formation and progression. Previous 
murine models of AAA have demonstrated increased IL-1β 
mRNA and protein levels [27]. Likewise, in human AAAs, IL-1β 
gene and protein expression has been demonstrated to be 
increased 10-fold and 4-fold, respectively [27]. 

IL-1 signaling in AAA disease was once thought to be related 
to atherosclerosis. IL-1 is widely expressed in human and 
experimental atherosclerotic lesions with IL-1β playing a 
major role in the progression and rupture of atherosclerotic 
plaques; however, recent studies suggest IL-1 could stabilize 
advanced plaque formation [44-46]. One of the earliest steps of 
atherosclerosis is the recruitment of leukocytes by endothelial 
cells through the expression of adhesion molecules (such as 
ICAM-1 and VCAM-1) induced by IL-1β [23]. However, while 
IL-1 has been demonstrated to play an important role in the 
development of atherosclerosis, many questioned whether 
the same inflammatory pathways proven essential for 
atherosclerosis are also key in AAA [47]. 

Smoking (nicotine-exposure) is one the strongest associated 
risk factors for AAA progression and the main indicator for 

AAA screening [47]. Like the processes seen in atherosclerosis, 
nicotine upregulates ICAM-1 and VCAM-1, thereby recruiting 
leukocytes and activating the production of IL-1β by 
macrophages. In both processes, recruitment of myeloid cells 
to the aortic wall plays a critical role and highlights IL-1’s role 
in AAA disease through innate immune activation. 

Leukocyte signaling 

AAA disease is often accompanied by a robust inflammatory 
response in the wall of the abdominal aorta with multiple 
different subsets of immune cells (such as monocytes, 
macrophages, neutrophils, dendritic cells, natural killer 
cells, and T-cells) accumulated within the tunica media and 
adventitia (Figure 1) [47]. Both IL-1α and IL-1β are believed to 
be key mediators in this response. IL-1α‘s function depends on 
its sub-cellular location, regulating normal gene expression 
when expressed within the cytosol during homeostasis [48]. 
However, in the presence of cell death, passive leakage of 
cytosolic IL-1α may occur. This abundance of released IL-1α 
results in robust inflammation in an IL-1R1 dependent manner 
leading to its designation as a key “alarmin” in the cell that 
alerts the host to injury or damage [30,31,35,49]. IL-1 is known 
to upregulate adhesion molecules on endothelial cells, which 
in turn recruits immune cells in and around the aortic wall. The 
consequent inflammatory response aggravates AAA formation 
[21]. As a genetic-proof of principle, mice with IL-1 or IL-1R1 
deletion have demonstrated less macrophage staining within 
the wall of the aorta after aortic aneurysm induction [26]. IL-
1β also leads to the formation of neutrophil extracellular traps 
and neutrophil elastase release resulting in vast degradation 
of the extracellular matrix within the aortic wall [50]. 

Chronic inflammatory cell infiltration within the damaged 
aortic wall is largely dominated by pro-inflammatory CD4 
T-cells and activated macrophages [6]. These cells can 
undergo phenotypic modulation based on their surrounding 
microenvironment to a largely pro-inflammatory phenotype, 
thereby influencing disease progression [6]. CD4 Th17 cells 
are stimulated by IL-1 and promote macrophage recruitment 
to the vascular wall. Deficiency in CD4 Th17 cell signaling has 
been demonstrated to reduce aortic macrophages in murine 
models [51,52]. Both of these myeloid cells contribute to 
AAA disease through matrix metalloproteinases (MMP) and 
elastase production, thus initiating destruction of the aortic 
wall resulting in aneurysm formation. In return, dying cells 
within the aortic wall release damage-associated molecular 
patterns (DAMPs) which are sensed by the accumulated 
myeloid cells, resulting in their continued activation and 
production of chemokine and inflammatory cytokines. 
Additionally, these infiltrating immune cells release reactive 
oxygen species (ROS) and induce expression of cellular 
adhesion molecules which lead to further recruitment of 
immune cells, induction of vascular smooth muscles cell 
apoptosis, and tissue injury [53].
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Macrophages and IL-1 signaling 

Macrophages have been implicated as a key component 
of the inflammatory process in AAA disease through their 
production and activation of inflammatory cytokines as well 
as serving as a major source of MMP production [54,55]. Cell 
damage caused by endogenous stimuli results in a “sterile” 
inflammatory process and release of DAMPs. These signals 
ultimately lead to the activation of innate immune cells, 
primarily macrophages. Activated aortic wall macrophages 
subsequently initiate inflammasome activation and IL-1 
production. In turn, IL-1β is a potent macrophage-inducer 
and results in their continued activation and signaling 
[54,55]. Additionally, IL-1 signaling has been linked to 
increase macrophage infiltration in AAAs [27]. This increased 
inflammatory cell accumulation inevitably leads to continued 
pro-inflammatory cytokine and chemokine release and further 
activation of MMPs and caspase production resulting in aortic 
wall degradation, loss of smooth muscle cells, and untimely 
further aneurysmal dilation [47]. 

IL-1β serves as a “risk” signal for smooth muscle cells within 
the aortic wall and has been shown to co-localize with aortic 

smooth muscle cells early in AAA formation [27]. IL-1β induces 
recruitment of innate immune cells by activation of monocyte 
chemoattractant protein-1 (MCP-1/CCL2) [16]. MCP-1/
CCL2 is a potent chemoattractant that results in significant 
migration of monocytes/macrophages to inflammatory sites. 
Macrophages initiated by MCP-1 are more cytotoxic and have 
been demonstrated to induce higher levels of SMC apoptosis 
[56]. 

IL-1 signaling also leads to the activation of the c-Jun 
NH2-terminal protein kinase (JNK) pathway through toll-
like receptors (TLRs) expressed on immune cells in AAA. 
This pathway has been demonstrated to promote AAA 
development by inducing pro-inflammatory chemokine 
release [41,50]. Inhibition of the JNK pathway has been 
shown to reduce MMP production and chemokine-mediated 
macrophage migration, thereby slowing the progression of 
AAA development in rats and humans [50]. 

IL-1 Dependent Signaling 

In addition to innate immune activation, IL-1 signaling had 
been demonstrated to induce a number of cellular changes 

 

 

  
Figure 1. Model of Extracellular Functions of IL-1 in Aortic Aneurysm Formation. 
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implicated in AAA disease (Figure 2). Endothelial dysfunction 
plays a large role in AAA formation and progression and is 
influenced by IL-1β signaling. Early endothelial dysfunction 
is due to IL-1R1 mediated activation of NADPH oxidase which 
enhances superoxide anion (O2

-) production and excessive 
ROS generation [23,57,58]. Elevated and sustained levels of 
ROS induce vascular smooth muscle cell (VSMC) apoptosis 
resulting in depletion of cellular content of the medial layer 
within the aortic wall [50]. Additionally, ROS promote the 
infiltration of inflammatory cells, increase the secretion of 
pro-inflammatory cytokines, and can directly activate MMPs 
[57]. NADPH produced ROS also result in NF-κB- activation 
and inducible nitric oxide synthase axis (iNOS) activation 
[23,57,58]. 

iNOS can result in massive generation of nitric oxide (NO) 
resulting in extensive oxidative stress and inflammation. Thus, 
excessive NO generation can be an important factor in local 
destruction of the extracellular matrix through destruction 

of elastic fibers and cytotoxic effects on surrounding cells 
including marked apoptosis of VSMCs [58]. In addition to 
NADPH/ROS induced iNOS production, IL-1β can also directly 
activate the ERK 1/2 NF-κB- iNOS axis in human VSMCs [23]. 
Likewise, infiltrating inflammatory cells in AAA serve as 
another source of iNOS, mainly macrophages and T and B 
lymphocytes [58]. 

In the presence of such large-scale inflammation, the aortic 
wall undergoes significant weakening compounded by 
oxidative stress, VSMC apoptosis, and extra cellular matrix 
(ECM) remodeling. The presence of NADPH oxidases, the 
abundance of ROS, and the upregulation of iNOS induced by 
IL-1 signaling result in continued activation of ECM degrading 
enzymes and VSMC apoptosis [50].

IL-1β is a major activator of the transcription factor NF-κB which 
further amplifies the inflammatory reaction via transcription 
of several genes associated with both inflammatory and 

 
 

Figure 2. Model of Intracellular functions of IL-1 signaling in Aortic Aneurysm Formation. 
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oxidative reactions within the aortic wall [57]. IL-1β NF-κB 
stimulation leads to the release of NF-κB from complexes with 
its inhibitory protein, IκBα, which allows NF-κB subunits to 
translocate to the nucleus to promote transcription of target 
genes [59]. NF-κB activation in SMCs sustains IL-1β production, 
thereby establishing an autocrine mechanism which further 
stimulates inflammatory cell infiltration and oxidative stress, 
thereby creating a vicious cycle [29,57]. Inhibition of the NF-
κB pathway in endothelial cells has been shown to attenuate 
angiotensin II-induced AAA formation in murine models by 
reducing macrophage infiltration, oxidative stress, and aortic 
inflammation [50]. 

Through the aforementioned JNK and ERK pathways, IL-1β 
is known to increase the expression of MMP-1 and MMP-13. 
MMP-1 in particular was found to be significantly upregulated 
in aneurysmal aortic specimens comparted to healthy aortic 
tissues [50]. Independent of these pathways, IL-1β also 
increases the expression of MMP-8 [50]. Collectively, MMP 
activity is known to initiate ECM degradation and proteolysis 
within the aortic wall thereby contributing to aneurysmal 
degeneration [50,57].

IL-1α Specific Signaling 

Unlike IL-1β which has been extensively studied, little is 
known about the role of IL-Iα in AAA disease. One recent 
study demonstrated that IL-1α may help to attenuate AAA 
as IL-1α knockout AAA murine models were demonstrated 
to have larger AAA size compared to controls [48]. IL-1α 
knockout was also demonstrated to result in increased elastin 
breaks, increased levels of inflammatory macrophages and 
neutrophils, and increased MMPs [48]. The results of this study 
show that IL-1α and IL-1β may play separate, rather than 
overlapping roles, in AAA disease and that further studies 
specifically evaluating the role IL-1α in AAA disease are 
necessary [48]. 

Regulators of IL-1 Signaling

While IL-1 has been implicated to play an integral role 
in AAA disease through mediation of inflammation, it is 
important to recognize that regulation of IL-1 signaling 
may also have a significant influence on AAA formation and 
progression. Inflammasomes are a multiprotein complex that 
are responsible for the cleavage of pro-caspace-1 into active 
caspase-1, which in turn convers the cytokine precursor pro-
1L-1β into the potent proinflammatory mediator 1L-1β [60]. 
The nucleotide-binding domain (NOD)-like receptor protein 
3 (NLRP3) inflammasome is the main regulator of IL-1β. The 
NLRP3 inflammasome has been theorized to contribute to 
several human diseases, including cardiovascular disease 
[10,46]. 

Expression of the NLRP3 inflammasome is induced by 
multiple factors, most notably by tumor necrosis factor 

and IL-1β through the activation of NF-κB [60]. The NLRP3 
inflammasome has been reported to be activated by a wide 
range of PAMPs and DAMPs including glucose, β-amyloid, 
and cholesterol crystals [22]. Chronic exposure to high 
levels of free fatty acids and glucose have been reported to 
induce NLRP3 inflammation resulting in increased apoptosis 
and impaired insulin secretion in pancreatic β-cells in 
type 2 diabetes through significant IL-1β production by 
infiltrating macrophages [22]. Similarly, previous studies have 
demonstrated enhanced expression of IL-1β in a high glucose 
milieu in human monocytes and macrophages, pancreatic 
islet cells, myocardium, and aortic endothelium thought to 
be due to increased NLRP3 activation [23]. However, some 
have theorized that the inflammasome detects disturbances 
in cellular homeostasis (such as K+ efflux, Ca2+ signaling, 
mitochondrial dysfunction, and lysosomal rupture) rather 
than directly recognizing common motifs present in these 
activators. As such, the NLRP3 inflammasome may become 
activated due to common cellular signals induced by its 
activators [60]. 

The main mechanism through which the NLRP3 
inflammasome exerts its inflammatory effects is through the 
activation of caspase-1 which in turns cleaves pro- IL-1β and 
pro-IL-18 into their activated forms. Caspase-1 deficiency 
in ApoE (-/-) mice has been shown to reduce the diameter, 
incidence, and severity of AAA along with adventitial fibrosis 
and inflammatory responses [61,62]. However, some studies 
suggest that mature IL-1β may also be produced independent 
of caspase-1, especially in the context of local inflammation 
[63]. 

Other implicated regulators of IL-1 signaling include the 
microbial and viral components of the “microbiome”. Current 
studies are evaluating the microbiome as a distant regulator of 
cytokine induction and differentiation of cytokine producing 
cells. Small changes in the host microbiome have been 
associated with the development of various inflammatory 
disease such as colitis, obesity, and cardiovascular disease. It 
is possible that pathological activation of immune cells driven 
by bacterial products could promote AAA [47].

Perivascular adipose tissue which surrounds the aorta may 
also impact IL-1 signaling and aortic wall homeostasis. It 
has been suggested that inflammation in the perivascular 
adipose tissue has the ability to expand to the aortic wall and, 
as a result, contribute to AAA development [47]. This is the 
premise for adventitial elastase application models of AAA 
disease in murine models. Surrounding adipocytes in a pro-
inflammatory environment become activated and produce 
pro-inflammatory cytokines, such as IL-1, which in turn 
facilitate immune cell activation [47]. 

TNF-α, another important protein in the regulation of both 
acute and chronic inflammatory responses, promotes NF-κB, 
IL-1β, IL-6, MMP-2, and MMP-9 levels in Angiotensin-II induced 
vascular smooth muscle cells [64].



                                                                                                                                                      
 Millar J, Nasser E, Ailawadi G, Salmon M. IL-1 in Abdominal Aortic Aneurysms. J Cell Immunol. 2023;5(2):22-31.

J Cell Immunol. 2023
Volume 5, Issue 2 28

Other Signaling Effects of IL-1 

Endothelial cells display remarkable heterogeneity in 
their response to exogenous stimuli. Some studies have 
suggested that vascular endothelial cells exposed to various 
environmental stimuli undergo dynamic phenotypic switching 
that results in endothelial cell dysfunction and, as a result, 
cause a variety of diseases [65]. Endothelial to mesenchymal 
transition (EndMT) is a complex biological process in which 
endothelial cells lose their endothelial characteristics, acquire 
mesenchymal phenotypes, and express mesenchymal cell 
markers. This leads to a loss of normal endothelial cell function 
in maintaining vascular homeostasis (such as permeability) 
and results in a pathological state including tissue fibrosis and 
atherosclerosis [65]. 

EndMT is induced by inflammation with both IL-1β and TGF-β 
being implicated as the main driving factors [59]. While there 
have been no studies directly examining the role of EndMT 
in AAA disease, in vitro studies have demonstrated that IL-1β 
stimulation leads to endothelial monolayer disruption and 
induces EndMT-like changes in endothelial cells upon long-
term treatment [59]. Several studies have also implicated the 
NLRP3 inflammasome, the main regulator of mature IL-1β 
secretion, in the process of EndMT as well [65]. 

VSMCs are also able to respond to local environmental 
factors with tremendous plasticity and can change their 
phenotype to a proliferative/inflammatory state [66]. Similar 
to endothelial cells, IL-β modifies the expression of specific 
SMC genes relevant for ECM composition and cell adhesion, 
thereby altering the mechanical properties of the arterial wall 
which may contribute to AAA disease [67]. 

Genetic and Pharmacologic Inhibition of IL-1 in AAA 
Disease 

Genetic inhibition 

Murine models have remained the best available strategy 
to study the molecular mechanisms for AAA disease [47]. 
Murine models of AAA with IL-1β or IL-1R1 knockout have 
demonstrated attenuated AAA formation with IL-1β knockout 
demonstrating the greatest protection [27]. These studies 
have demonstrated the role of IL-1 in progression of small 
established AAAs [27]. NLRP3 and IL-1β deficiency in ApoE (-/-) 
mice was also demonstrated to decrease the maximal diameter, 
severity, and incidence of AAA along with adventitial fibrosis 
and inflammatory responses [53,61]. Similar effects of IL-1β 
or IL-1R1 knockout have been observed in murine models of 
TAA and were demonstrated to have reduced accumulation of 
macrophages and neutrophils, fewer inflammatory cytokines, 
and lower MMP-9 levels [26,68]. 

Pharmacologic inhibition 

Given its diverse and integral role in AAA disease and aortic 

wall inflammation, IL-1β inhibition has been proposed as a 
possible strategy for targeted medical therapy of AAA disease. 
Neutralization of IL-1 has been demonstrated to be safe in 
humans and has already been utilized and shown to have 
widespread benefit in autoinflammatory conditions such as 
gout, rheumatoid arthritis, and autoimmune pericarditis [22]. 
There currently exist multiple pharmacological agents which 
disrupt IL-1 signaling that are FDA approved [27]. 

Anakinra is a recombinant human intrinsic IL-1 receptor 
antagonist (IL1-Ra) and was the first biological drug of 
selective IL-1R1 antagonism to receive approval from the US 
FDA. It can prevent the activity of both IL-1α and IL-1β by 
blocking their binding to IL-1R1 [22]. Differences seen in IL-
1α and IL-1β signaling in murine AAA models suggest that 
targeting of these molecules could produce different effects 
and that targeting their common receptor, IL-1R1, might be 
the preferred target for pharmacologic inhibition studies 
[48]. Murine models of AAA treated with escalating doses of 
the IL-1 receptor antagonist, Anakinra, demonstrated a dose-
dependent decreased in maximal aortic dilation [27]. Similarly, 
murine models of AAA treated 3-7 days following AAA 
initiation demonstrated protection against AAA progression 
and attenuated AAA dilation [27]. 

Rilonacept is a soluble decoy receptor that binds both IL-1 
and IL-1β with high affinity and prevents their activity with 
a long-term inhibitory effect. Similar to Anakinra, Rilonacept 
was approved by the FDA in 2008 [69]. Lastly, Canakinumab 
is a human monoclonal IgG1 antibody with affinity for IL-1β. 
It does not react with IL-1α or IL-1R1 and is a specific inhibitor 
of IL-1β. While not currently FDA approved, early clinical trials 
have demonstrated canakinumab to be safe and effective 
against several inflammatory diseases [70]. Additionally, 
clinical trials (NCT02007252) further evaluating the role of 
IL-1β inhibition on the expansion of small AAA in humans 
utilizing Canakinumab are currently underway [71]. Studies 
utilizing Canakinumab will help elucidated whether inhibition 
of IL-1β or its common receptor (IL-1R1) will yield the greatest 
protection in AAA formation and progression [26]. 

Conclusion 

In summary, there is an overwhelming and ever-growing 
body of evidence to suggest the diverse and integral 
role of IL-1 signaling in aortic wall inflammation and AAA 
disease. One area of continued study is that of regional 
specific signaling. Structural differences, differences in cell 
origin, regional diversity in microvascular endothelium, 
and immunologic makeup may result in differences in 
susceptibility for aneurysmal disease between the AAs, dTAAs, 
and AAAs. These may lead to differences in cellular responses 
to the same stimuli and regional variations in success for 
medical management. As such, studies should be conducted 
in these segments separately to evaluate these differences 
[57]. Additionally, further studies investigating the upstream 
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regulators of IL-1 signaling (such as the NLRP3 inflammasome) 
may provide new insight into novel pharmacological targets 
for the treatment of AAA disease. As AAA remains a clinically 
relevant disease, there is an unmet need for effective medical 
management and IL-1 signaling may prove to be an effective 
pathway for targeted medical therapy. 
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