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Introduction

Methylphenidate (MPD; Ritalin®, Concerta®) is one of the 
first line treatments for patients with Attention Deficit 
Hyperactivity Disorder (ADHD), and is growing in illicit use for 
recreation or cognitive enhancement in normal subjects [1-6]. 
MPD has been shown to produce a variety of effects on the 
locomotive activity of normal and ADHD-model animals [7-
23]. Acute exposure to MPD causes an increase in locomotor 
activity, while chronic use of MPD has been reported to 
produce behavioral tolerance [17,24,25], withdrawal [11], or 
sensitization [10, 17,19,21,25-27]. 

MPD shares a similar pharmacologic profile to other 

psychostimulants including amphetamine and cocaine 
[24,28-30]. It is effective in treating ADHD, in addition to 
disorders of alertness in children with learning difficulties and 
of sleep-wake cycles such as narcolepsy and chronic fatigue 
[31-33]. MPD has been shown to bind to the dopamine 
transporter preventing dopamine reuptake to the presynaptic 
terminal, similar to the mechanism of action of cocaine and 
methamphetamine [24,28,29]. Decreased dopamine reuptake 
increases dopamine in the synaptic cleft, leading to increased 
signaling in the postsynaptic neuron which underlies MPD’s 
status as an indirect dopamine agonist [29,34,35]. This increase 
in dopamine is believed to be linked to the reinforcing effect 
of psychostimulants such as MPD [36,37].
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Acute administration of psychostimulants such as MPD in 
normal and ADHD model animals results in an increase in 
locomotor activity [23,25-27,38]. At low doses, this manifests 
as a net increase in locomotive activity while at high doses it 
becomes repetitive purples movements termed stereotypic 
behavior [39-43]. Chronic administration of psychostimulants 
results in neural plasticity that will ultimately lead to the 
dependent state. In animal models, tolerance, withdrawal, and 
behavioral sensitization are used as experimental bioindicators 
of the abusive potential of a compound [24-27,32,39,44-47]. 
Behavioral sensitization, or the progressive augmentation of 
the drug effect produced by re-administration of previous 
doses, has been implicated as the physiologic underpinning of 
the symptom of drug craving [48,49], and serves as one of the 
experimental biomarkers that the drug under investigation has 
properties consistent with a drug of abuse [24,26,27,45,47,50]. 

Underlying these maladaptive responses to the effects 
of MPD is the brain’s reward/motive circuit [49,51-54]. This 

circuit (Figure 1) is made up of central nervous system 
(CNS) structures that are members of the executive function, 
mesolimbic, and motor systems and work in concert to 
mediate the behavior of an organism [50,55] and includes 
the ventral tegmental area (VTA), the nucleus accumbens 
(NAc), the caudate nucleus (CN), and the pre-frontal cortex 
(PFC), [56,57]. Classically, the reward circuit is described as 
originating from the VTA which projected to the NAc, which 
then projected to the PFC [53,56,58]. However, there is now 
increased understanding that the projections from the VTA 
are diffuse to the ventral and dorsal striatum, including the 
CN, and that reciprocal connections between these and other 
CNS structures all contribute to the rewards system [53,56,58]. 

Understanding the neural pathways and their components 
that mediate the complex responses to MPD exposure 
remains incomplete. One of the methods used to study them 
is to ablate a specific brain area of an animal model’s CNS 
structure or signaling pathway (non-specifically or specifically) 

 

  
Figure 1. Figure 1 shows a representative diagram of the multiple interactions and pathways that mediate the acute and chronic effects 
of MPD in the rat CNS. Note that not all pathways are shown, nor is diagram meant to be anatomically to scale. Abbreviations not found in 
text: GP: Globus Pallidus; LC: Locus Ceruleus; NTS: Nucleus Tractus Solitarius; RMT: Rostromedial Tegmentum; STN: Subthalamic Nucleus; VP: 
Ventral Pallidum.
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and challenge the subject to the substance. This manuscript 
reviews the non-specific electrolytic, dopaminergic specific, 
and glutaminergic specific lesions to the VTA (Figure 3) [59], 
to the NAc (Figure 4) [13,15,60], to the CN [4,7] (Figure 5) 
and to the PFC (Figure 6) [11,14,15], in the setting of acute 
and chronic MPD exposure that have been conducted. 
Bilateral non-specific lesions were conducted with electrolytic 
ablation [13,15,60], bilateral chemical dopaminergic specific 
lesions were obtained with local microinjection of the 
neurotoxin 6-hydroxydopamine (6-OHDA) [7,13,61-63], and 
bilateral glutaminergic specific ablation was obtained with 
local microinjection of the neurotoxin ibotenic acid [64-
67] within the VTA, NAc, CN & PFC. Animal response to MPD 
was monitored and recorded with a computerized animal 
tracker in a behavioral open field assay, a means to track 
animal locomotive activity. It can track multiple movement 
parameters which can be analyzed by software to output 
distinct behavioral expression of locomotion which can then 
be followed over time to determine the acute and chronic 
effects of MPD. By drawing together current understandings 
of neural anatomy, circuitry, and these lesions’ effects, we hope 

to offer a perspective on the current knowledge governing 
the effects of MPD.

Methods

The methods used in this review were published in detail 
[4,7,11,13-15,59,60,68,69]. In short, 160 male Sprague-Dawley 
rats weighing 170-180 g were obtained from Harlan Labs 
(Indianapolis, IN, USA). Animals were individually placed 
in plexiglass cages (40.5 x 40.5 x 31.5 cm in dimension) 
in a soundproof room for 4-5 days to acclimate prior to 
experimentation. These cages served as the home and test 
cage (Figure 2). Animals were maintained on a 12-hour light/
dark cycle that began at 06:00. Food and water were provided 
ad libitum throughout the experiment, and the temperature 
was kept at 21 ± 2°C with a relative humidity of 37-42%. Each 
of the four-brain lesion consist five group each N=8 as follow: 
1). Intact animals; 2). Shame operated; 3). Nonspecific bilateral 
electrolytic lesion; 4). 6-OH DA bilateral injection for dopamine 
signaling ablation and 5). Ibotonic acid bilateral injection for 
chemical ablation of the glutaminergic system (Table 1). This 

Table 1. Table 1 shows the experimental protocol of methylphenidate (MPD) administration and recording schedule. Displayed are the 
experimental days (ED’s) either normal saline or MPD was administered. * indicates day rats were behaviorally recorded post-injection. 
Lesion refers to the electrolytic, 6-OHDA toxin, or ibotenic acid toxin administered on ED 2. Brackets show the comparisons that were made: 
the post-surgical effect (ED 8 vs. ED 1), the acute effect of MPD (ED 9 vs. ED 8), and the chronic effect of MPD- sensitization- that is seen after 
sustained administration (ED 14 vs. ED 9) and persists after washout (ED 18 vs. ED 9). Full methodology can be found in the original reports 
[4,7,11,13-15,27,59].
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protocol was approved by our Animal Welfare Committee and 
carried out in accordance with the National Institute of Health 
Guide for Care and Use of Laboratory Animals. On experimental 
day 1 (ED 1-Sal) animals were weighed and 0.8 mL of 0.9% saline 
was administered intra-peritoneal (i.p). All animals weighed 
200-220 g at that time. Locomotive behavioral activity was 
recorded for 120 minutes post-injection to establish a baseline 
prior to surgical manipulation. On experimental day 2 (ED 2), 
the lesion and sham groups underwent surgery and were 
then allowed to recover for approximately 5 days (ED 3-7). On 
experimental day 8, saline was re-administered (ED 8-Sal) and 
post-surgical locomotor activity was recorded for 120 minutes 
to compare with the pre-surgical baseline (ED 1-Sal). Starting 
on experimental day 9 (ED 9-MPD), daily injections of 2.5 mg/
kg MPD (Mallinckrodt, Hazelwood MO) dissolved in 0.8 mL of 
0.9% saline were administer for 6 consecutive days (ED 9-MPD 
to ED 14-MPD), and activity recorded for 120 minutes post-
injection. This dose of 2.5 mg/kg MPD has been shown to be 
sufficient to elicit behavioral sensitization in rats in previous 
dose-response experiments [7-9,17-23,70-72]. For the next 3 
days (ED 15-17), animals received no injections (the washout 
period). After the washout period (ED 18-MPD), the rats were 
re-challenged with MPD at the previous dose of 2.5 mg/kg 

and behavioral activity was observed for 120 minutes (Table 
1). On ED 2, the sham operation group, the electrolytic lesion 
group, the 6-OHDA group, and the ibotonic acid group animals 
were anaesthetized with 60 mg/ kg pentobarbital and placed 
in the stereotactic apparatus. An incision was to expose the 
skull. For surgery, holes were drilled in the skull bilaterally as 
follows: for the PFC- anterior (A) from Bregma 3.7 mm, lateral 
(L) from midline 0.4mm; for the NAc A- 1.7 mm, L- 1.4 mm 
and 1.8 mm; for the CN posterior (P) from Bregma 0.2 mm, L- 
2.0 mm and 3.0 mm; for the VTA P- 4.8 mm, L- 0.5 mm using 
the Paxinos and Watson “The Brain Atlas” [73] coordination. 
Bipolar stainless steel 80u electrode was used to make the 
non-specific electrolytic lesion with 2.0 mA DC current for 
90 sec. at a depth of 3.2 mm and 4.2 mm; 1.0 mm and 1.6 
mm; 4.0 mm and 5.2 mm and 8.2 mm and 8.5 mm within the 
PFC, NAc, CN and VTA respectively.  For the chemical specific 
ablation of dopaminergic  and glutamatergic neurons 8.0 ug 
6OH DA (Sigma St. Louis, Mo, USA) dissolved in 2 uL of 0.9% 
Saline containing 0.2 mg/ml ascorbic acid and 4.0 uL of 1 ug/
mL isotonic acid (Sigma St. Louis, Mo, USA) solution in depth 
similar to the non-specific electrolytic lesion for dopaminergic 
and the glutamatergic specific neurons ablation respectively. 
For the shame operation groups similar procedure (electrodes, 

 

  Figure 2: Figure 2 shows a schematic of the open field recording system used to monitor the animals and generate the indices of movement 
in the original reports [4,7,11,13-15,27,59].
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cannula and coordination) were used but no current or 
injection were given [4,7,13-15,59,60,69].   The cannulas and 
the electrodes were then removed, and incision closed with 
wound staples.

Behavioral locomotive activity was recorded using the 
open field computerized animal activity monitoring system 
(CAAM, Accuscan Instruments, Inc., Columbus OH). The 
CAAM system consists of 3 arrays of 16 infrared light beams 
with sensors on the opposite side, spaced every 2.5 cm that 
cross orthogonally through the plexiglass cage (Figure 2). 
Movement of the rats interrupted the infrared light beams, 
and each beam-break detected by a sensor was collected 
as an event by the Accuscan Analyzer and transferred to a 
computer. Events over a 5-minute period were summed, 
giving 12 5-minute bins for each hour of observation. These 
bins were transferred to the OASIS data collecting software 
and three indices of behavioral locomotion were compiled for 
each collection period: Total movement (TM), total travelling 
distance (TD)- all forward locomotion in cm, horizontal activity 
(HA)- the overall movement in the lower level of the cage, and 
the number of stereotypic movements (NOS)- episodes of 
purposeless, repetitive movement in the upper level of the 
sensors separated by at least 1 second. Only HA, TD, & Nos 
were published, TM not. At the conclusion of the experiment, 
animals were overdosed with sodium pentobarbital and 
perfused with 10% formaldehyde. The brains were removed 
and stored in 10% formaldehyde. 60 µm thickness coronal 
sections were cut, stained, and scanned with a high-resolution 
scanner to identify lesion size and location correlated to the 
NAc using the Paximos and Watson rat brain atlas [73].

Rat behavioral locomotive activity was quantified by four 
compiled indices of movement (TM, HA, TD, NOS) obtained 
in twelve 5-minute bins collected the hour after injections 
for each rat were averaged across each experimental group 
based on the experimental day to allow for comparisons. 
Post-surgical manipulation effects on baseline behavioral 
locomotor activity were determined by comparing the 
animal’s activity after a saline injection before and after the 
surgical intervention (ED 8-Sal vs. ED 1-Sal). The acute effects 
of MPD were determined by comparing the first day of MPD 
administration to the post-surgical baseline (ED 9-MPD vs. ED 
8-Sal). The effects of repetitive (chronic) MPD exposure over 
6 consecutive days on behavioral locomotor activity were 
determined by comparing the final day of administration 
to the first, i.e. the induction phase (ED 14-MPD vs. ED 
9-MPD). The effects of chronic MPD exposure following a 
washout period on behavioral locomotor activity were 
determined by comparing MPD re-challenge to the initial 
administration, i.e. the expression phase (ED 18-MPD vs. ED 
9-MPD) (See Table 1). Significance of change among these 
within-group comparisons was determined by ANOVA, with 
repeated measures with adjustments for correlation among 
measurements within each animal. Post ad hoc comparisons 
were used to estimate changes between days within groups. 

A p-value<0.05 was considered statistically significant. The 
effects of each lesion were determined by comparing the 
treatment group to both the control and sham groups on 
each of the recording days (ED 1-Sal, ED 8-Sal, ED 9-MPD, ED 
14-MPD, and ED 18-MPD). Significance of change among the 
between-group comparisons was determined with Turkey-
Kramer Honest Significant Difference (HSD) post hoc test. A 
p-value<0.05 was considered statistically significant.

Result

The ventral tegmental area (Figure 3, VTA)

The VTA is a collection of primarily dopaminergic 
neurons distinct from the substantia nigra that gives rise 
to the dopaminergic projections of the mesocorticolimbic 
system which underlies the reward circuit and is critical for 
conditioned responses and chemical dependency  [74-76]. 
Despite usually being considered a single entity, the VTA is 
quite heterogenous, and is comprised of four major divisions: 
the parafasciculus retroflex area (PFR), the ventral tegmental 
tail (VTT), the paranigral nucleus (PN), and the parabrachial 
pigmented area (PBP) [58]. The major outputs of the VTA are 
from the PN and PBP to the NAc and the PFC, which are critical 
for the initiation of reward functions via the mesolimbic system 
[19,58], and from the PFR and VTT to the diagonal band. The 
dopaminergic outflow of the VTA is thought to be modulated 
by its multiple afferent inputs, the most dominant being the 
glutamatergic input from the PFC [75]. Other inputs to the 
VTA originate from the NAc, the CN, the ventral pallidum, the 
rostromedial tegmental nucleus, the subthalamic nucleus, 
pedunculopontine tegmental and laterodorsal tegmental 
nuclei, the bed nucleus of the stria terminalis, and the superior 
colliculus [17,18,40,41,77-81]. 

Both glutaminergic and dopaminergic signaling in the VTA 
have been shown to be critical for the animal response to 
MPD. Specific glutaminergic ablation of the VTA abolishes 
any response to MPD acutely or chronically, indicating 
that glutaminergic signaling with the VTA is critical for the 
acute and chronic behavioral responses to MPD (Figure 
3) [59]. Dopaminergic ablation however only prevents the 
acute response to MPD, the chronic response of behavioral 
sensitization is left intact (Figure 3) [59]. Significant attention 
has been paid to the functions of the VTA’s dopamine 
projections, which have been shown to initiate the 
mesocorticolimbic reward system [49,81-83], however this 
finding of glutamate in the VTA being critical is novel and 
presents a further nuance to the complexities of this nucleus. 
Notably, glutaminergic ablation of the prefrontal cortex also 
precludes behavioral sensitization [84,85], which agrees with 
the hypothesis that the PFC/VTA is the predominant pathway 
to regulating behavioral sensitization.

There is significant evidence that differing sections of 
the VTA induce different behavioral outcomes. The medial 
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VTA is comprised of an inhibitory pathway that negatively 
regulates behavioral activities [14,81,86-88] while the lateral 
VTA appears to mediate reward functions such as behavioral 
augmentation [19,20,76,77]. Excitatory D1 receptors appear 
to be the predominant type in the lateral reward pathway 
[89], with inhibitory D2 making up the majority of the medial 
inhibitory pathway receptor type [90,91]. The functional 
and anatomic distinction with in the VTA would appear to 
explain the results of non-specific electrolytic ablation of the 
VTA causing an acute increase in behavioral activity with no 
change to the overall response to MPD administration (Figure 
3) [59]. Ablation of the medial inhibitory VTA with an intact 
lateral reward VTA would produce larger behavioral increases 
while maintaining the response to MPD. 

Identification and targeting of the VTA’s subregions (medial 
vs. lateral, PFR vs. VTT vs. PN vs. PBP) has proved to be 
exceedingly difficult, even using in vivo electrophysiologic 
studies [92]. These studies of the heterogeneity of the VTA 
appear to disagree with the classical view of the VTA solely as 
the dopaminergic origin of the mesolimbic and mesocortical 
pathways, and hints at the higher order modulation required 
to produce complex behavioral responses. Further work using 
in vivo recording, lesions, and microinjections investigating 
the subdivisions of the VTA represent future avenues for 
understanding this nucleus.

The nucleus accumbens (Figure 4, NAc)

 The nucleus accumbens (NAc) is critical for motivation, 
emotion, limbic functions, and motor execution. It is 
composed predominantly of dopaminergic median spiny 
neuron’s (MSN’s) and is divided into a shell and core that are 
anatomically and functionally distinct [93-95]. The NAc shell 

seems to mediate reward and addiction behaviors, while the 
core appears to modulate conditioned response and spatial 
learning [94,96,97]. The primary input to the NAc is from the 
VTA, but it also receives input from the substantia nigra, the 
amygdala, the hippocampus, and the PFC. The output from 
the NAc is via its MSN’s to various basal ganglia and midbrain 
structures including (but not limited to) the substantia nigra, 
the VTA, the ventral pallidum, the thalamus, the globus 
pallidus, the subpallidus, and the stria terminalis [94,98,99].

Changes in accumbal dopamine have been shown to be 
critical for reward circuit responses. Psychostimulants such as 
MPD have been shown to cause an increase in dopaminergic 
transmission from the VTA to the NAc, and increased dopamine 
within the NAc has also been shown to lead to increased 
locomotion [100-102]. It has been consistently reported that 
direct chronic microinjection of other dopaminergic agonists 
such as amphetamine, cocaine, or morphine into the NAc 
can induce behavioral sensitization [103-105], suggesting 
that the NAc is involved in the induction of behavioral 
sensitization. Psychostimulant exposure increases dendritic 
branch points and spines of the NAc’s MSN’s, and MPD has 
been shown to cause increased spine formation in excitatory 
MSN-D1 dopamine receptors but not inhibitory MSN-D2 
dopamine receptor spines [106,107]. This excitatory effect of 
psychostimulants is greatest in the shell [108-110], indicating 
this component of the NAc is critical to mediating chronic 
psychostimulant effects. 

Lesions to the NAc have confirmed its role in responding to 
acute and chronic MPD. Non-specific electrolytic lesions to the 
NAc have resulted in an exaggerated acute response to MPD 
and a loss of behavioral sensitization with chronic exposure 
(Figure 4) [13]. This indicates that in addition to its role in the 

Figure 3. Figure 3 shows a representation of animal total movement (TM) following acute and chronic methylphenidate (MPD) in animals 
that were subjected to lesions to the VTA. 

* = indicate significant p<0.05 different from experimental day 1 (ED 1) baseline (BL), (ED1 MPD/ ED1 BL); Δ = indicate significant p<0.05 
different from experimental day 1 (ED 1) methylphenidate (MPD) 2.5mg/kg, i.e., (ED10 MPD/ ED1 MPD). 
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response to MPD, the NAc serves as an inhibitor of behavioral 
activity [111]. The NAc’s inhibitory role in behavioral activity 
can be seen following treatment with dopamine modulators 
that attenuate activity [112,113], and could serve as an 
autoregulatory system to control excessive dopaminergic 
signaling.

Selective lesions to the dopaminergic signaling of the NAc 
also resulted in a loss of behavioral sensitization to cocaine, 
amphetamine, and MPD (Figure 4) [15,114,115]. One study 
showed two distinct responses in rats following dopaminergic 
lesions of the NAc. While some animals exhibited no increase 
in locomotor activity after the acute injection of MPD, others 
showed a significantly elevated locomotor activity following 
MPD and this difference persisted throughout the length 
of the study [15]. Those animals that showed an increase in 
behavioral activity following acute MPD did not develop 
behavioral sensitization, i.e. a further increase beyond the 
acute effect, while those that showed no behavioral change 
following the dopaminergic lesion did show behavioral 
sensitization following repetitive (chronic) MPD exposure 
[15]. This work seems to verify that NAc dopamine is a 
critical component of the behavioral response both acutely 
and chronically to MPD, but the heterogeneity of responses 
raises more questions than it answers. The author notes that 
the accuracy of the lesion (core, shell or both) is unknown 
as the lesions could not be verified independently and 
therefore it is possible that the difference in acute response to 
psychostimulant administration may be due to differences in 
the size or location of the lesion [15]. 

The glutaminergic signaling of the NAc appears to also 
modulate the effect of MPD. Selective lesions to the 
glutaminergic NAc signaling system do not lead to a gross 

disturbance in the acute or chronic response to MPD (Figure 
4) [60], however when broken down into different locomotor 
expression of movement (horizontal activity vs. total distance 
vs. stereotypic movements), a significant difference is seen 
between groups [60]. Specifically, more goal directed forward 
movement as measured by horizontal activity (HA) was 
attenuated while stereotypic activity as measured by the 
number of stereotypic movements (NOS) was augmented 
following glutaminergic ablation of the NAc; total distance 
(TD) traveling remained unchanged [60]. This work seems 
to indicate that it is volitional movement that is modulated 
by glutaminergic signaling in the NAc, which fits with 
glutaminergic input from the PFC being critical to movement 
[116-120], and with a more global picture of glutaminergic 
signaling being critical to modulating the motor outcomes of 
the rewards circuit [4,7,19,21,70,87].

However, this lesion was centered in the NAc core and did 
not differentiate from the core versus the shell. The specific 
attenuation of volitional movement corroborates with other 
work showing that in addition to the shell/core distinction, 
different pathways within the NAc govern motivation and 
behavioral actions [121,122]. And while the NAc shell was 
initially thought to govern the response to psychostimulants, 
the NAc core has also been shown to participate in the response 
as well [109,123,124], further reinforcing the evidence that the 
anatomic distinctions are really secondary to the signaling 
pathways within the NAc. This all hint at the differing roles of 
the NAc core, shell, and the circuits between them.

The caudate nucleus (Figure 5, CN)

The caudate nucleus (CN) is unique in that it belongs 
to both the extrapyramidal motor system and reward/

Figure 4. Figure 4 shows a representation of animal TM following acute and chronic methylphenidate (MPD) in animals that were subjected 
to lesions to the NAc.

* = indicate significant p<0.05 different from experimental day 1 (ED 1) baseline (BL), (ED1 MPD/ ED1 BL); Δ = indicate significant p<0.05 
different from experimental day 1 (ED 1) methylphenidate (MPD) 2.5mg/kg, i.e., (ED10 MPD/ ED1 MPD). 
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motive circuit [19,20,125,126]. In rats, who lack an internal 
capsule, the caudate is blended with the putamen forming 
the caudoputamen or dorsal striatum which can similarly 
be divided into a medial and lateral component. The CN is 
comprised primarily of catecholaminergic dopaminergic 
medium spiny neurons (MSNs) that were originally thought 
to be inhibitory regulators of movement [127,128], however 
further work showed its functions to more complex [129]. The 
MSN’s of the CN express excitatory D1-dopamine receptors 
and inhibitory D2-dopamine receptors [130,131]. These 
neurons project via the direct pathway, the ansa leticularis, 
and the indirect pathway, the lenticular fasiculus, [125] 
to modulate movement. The indirect pathway expresses 
primarily inhibitory D2-dopamine receptors and exerts its 
effects via the globus pallidus externa and subthalamus. The 
direct pathway primarily expresses stimulatory D1 receptors to 
inhibit the globus pallidus interna. From there, both pathways 
project to the motor nuclei of the thalamus then to the cortex 
[125,130,132,133]. The CN receives input from other reward 
circuit nuclei such as the VTA, the NAc, and the PFC which 
assist in mediating behavioral sensitization following chronic 
psychostimulant administration [13-15,19,-21,134,135]. 

The dopaminergic and glutaminergic signal pathways of 
the CN have been shown to be critical for the effects of MPD. 
Increased dopamine transmission in the CN in response 
to psychostimulant exposure contributes to the increased 
locomotive activity that is characteristic of psychostimulants 
(Figure 5) [4,7,8,136]. Specific lesions to the dopaminergic 
neurons of the CN extinguishes any response to MPD both 
acutely and chronically, and specific antagonism of the D1 
receptor can prevent the motor response to MPD, indicating 

that the excitatory pathway is the primary target of MPD 
(Figure 5) [4,7,136,137]. Glutamate signaling regulates the 
output of the MSN’s to produce the chronic effects of MPD as 
shown by ablation of glutaminergic signaling within the CN 
that preventing the chronic effect of MPD such as behavioral 
sensitization, but not the acute effect (Figure 5) [4]. Co-
localized glutamate and dopamine receptors on a subset of 
MSN’s and an alteration of dopamine synthesis capacity in 
response to local CN glutamate could explain the modulatory 
role of glutaminergic signaling, however more work would 
need to done to verify this [135,138-141]. 

The CN has been shown to be critical for learning and 
memory, mediated by several pathways. Several studies have 
shown that animal memory is enhanced by increased CN 
dopamine and impaired by dopaminergic lesions [142,143], 
consistent with the theory of dopamine-mediated memory 
consolidation. However, glutaminergic signaling in the CN has 
also been shown to participate in long-term learning as well. 
Glutamine infusion into the CN has been shown to strengthen 
learned behavior, and N-methyl-D-aspartate (NMDA) 
receptors, a subtype of glutamate receptors, in the CN are 
required for operant learning in rats [144,145]. Additionally, 
non-specific systemic glutamate antagonists can reduce the 
stereotyped behavioral responses to psychoactive substances 
[146,147], and although this work is not CN specific it lends 
credence to a glutaminergic component to learning. The lack 
of behavioral sensitization to MPD after specific glutaminergic 
ablation supports glutaminergic signaling within the CN 
as mediator of long-term learning and substance abuse 
associated with chronic MPD use [4]. These findings seem to 
indicate a concomitant neuromodulatory role of CN glutamate 

Figure 5. Figure 5 shows a representation of animal TM following acute and chronic methylphenidate (MPD) in animals that were subjected 
to lesions to the CN.

* = indicate significant p<0.05 different from experimental day 1 (ED 1) baseline (BL), (ED1 MPD/ ED1 BL); Δ = indicate significant p<0.05 
different from experimental day 1 (ED 1) methylphenidate (MPD) 2.5mg/kg, i.e., (ED10 MPD/ ED1 MPD). 
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and dopamine for learned behaviors an individual exhibit 
in association with chronic psychostimulant use. And while 
evidence exists for some anatomic and function divisions 
between the medial and lateral CN in cognitive and association 
functions respectively [143], no work has been targeted 
enough to examine if the dopaminergic and glutaminergic 
mediated learning pathways are similarly separated. 

Non-specific electrolytic lesions to the CN have failed to affect 
the acute or chronic response to MPD (Figure 5) indicating 
that current electrolytic lesion targeting both afferent, the 
direct excitatory and the indirect inhibitory circuit and 
supports the CN as a heterogenous structure in both form and 
function [4,7].

The prefrontal cortex (Figure 6, PFC)

The prefrontal cortex (PFC) is a large territory of tissue at the 
anterior pole of the brain. It is critical to a diverse range of 
cognitive functions such as emotion, conscious decisions, and 
memory [148]. The PFC serves as a significant source of the 
excitatory amino acid glutamate, which it projects to the VTA 
and NAc to modulate dopaminergic signaling at these nuclei 
[48,49,149-151]. 

The PFC is critical in mediating behavioral sensitization to 
psychostimulants. Non-specific ablation of the rat PFC as 
well as dopaminergic specific lesion did not prevent the MPD 
acute effect while, prevent the MPD repetitive (chronic) effect 
eliciting behavioral sensitization in response to chronic MPD 
administration (Figure 6) [11,69]. However, glutaminergic 
specific ablation has been shown to prevent MPD-induced 

hyperactivity acutely, however the chronic response of 
sensitization is maintained and even exaggerated (Figure 
6) [14]. These differing responses to non-specific electrolytic 
lesions as compared to a selective chemical lesion is likely 
due to the numerous different neuronal pathways affected 
by a non-selective lesion [11,14]. They are consistent with the 
known glutamatergic efferents to the VTA and NAc. Glutamate 
from the PFC excites VTA dopaminergic neurons, which 
increases dopamine release in the NAc [118-120]. Increased 
dopamine within the NAc disinhibits motor inhibition, thus 
leading to increased locomotion [151,152]. This finding 
has been replicated with other psychostimulants, further 
implicating glutamate from the PFC as a key component of 
the neuroadaptive response to psychostimulants [80,151,153-
157]. The enhanced chronic response following MPD in 
the setting of glutaminergic specific ablation is likely due 
to the persistence of non-glutaminergic pathways that are 
uncovered following the specific lesion but destroyed in the 
non-specific lesion, and further indicates the diverse neuronal 
populations in the PFC [11,14]

The PFC cytoarchitecture however is highly heterogeneous, 
containing norepinephrine, dopamine, α2 adrenoreceptors, 
and GABA in addition to its primary glutaminergic neurons 
[158-160]. There are two subgroups of DA receptors: excitatory 
D1 and inhibitory D2 receptors, with D1 DA receptors are 
expressed in a higher density compared to D2 DA in the PFC 
[161,162]. These receptors have been shown to modulate 
the excitability of PFC neurons, with D1 receptor activation 
being able to directly excite PFC neurons [162-164]. One 
study has shown that specific dopaminergic ablation of the 
PFC did not alter the acute behavioral change to MPD, but 

Figure 6: Figure 6 shows a representation of animal TM following acute and chronic methylphenidate (MPD) in animals that were subjected 
to lesions to the PFC.

* = indicate significant p<0.05 different from experimental day 1 (ED 1) baseline (BL), (ED1 MPD/ ED1 BL); Δ = indicate significant p<0.05 
different from experimental day 1 (ED 1) methylphenidate (MPD) 2.5mg/kg, i.e., (ED10 MPD/ ED1 MPD). 
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did prevent behavioral sensitization following chronic MPD 
(Figure 6) [15]. However, reports of dopaminergic lesions to 
the PFC are mixed: with some reporting behavioral changes 
consistent with the prior study [114,165,166], while others 
report inconsistent motor activity changes following the 
lesion [166,167]. While these differences could certainly have 
been due to methodology, all the reports indicate that PFC 
dopamine plays a role in regulating both the motor response 
to acute MPD and the neuroadaptation to chronic MPD 
characteristic of the expression of behavioral sensitization.

However, rodent studies of the PFC should be considered 
with the recognition that they are poor surrogates for the 
human counterpart. The human PFC contains multiple 
divisions, of which only a few share homologies with a rodent 
counterpart [148,168]. Indeed, this is readily apparent from the 
lack of higher order social, emotional, and cognitive functions 
in rodents. So, while these studies of pathways and signaling 
in the rodent are not directly translatable to man, they provide 
an important understanding of the primitive pathways that 
drive complex neurocognitive functions such as behavioral 
sensitization and substance abuse. Further work in this region 
promises to deliver even more complete understanding of the 
basis of volitional and non-volitional motivation.

Conclusions

 The NAc, VTA, CN, and PFC have been shown to be critical 
in the acute and chronic response to MPD. Through specific 
and non-specific lesions (Figures 3-6), the functions of the 
nuclei and their composite signaling pathways is better 
understood. But as more is learned, further questions are 
raised regarding anatomic and functional distinctions of 
the various subdivisions noted. Further refinement of in vivo 
identification and targeting of these subdivisions will allow for 
a more accurate understanding of the reward circuit and its 
response to psychostimulants such as MPD.
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