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Background

Spinal cord injury (SCI) is a devastating disease that has 
a global impact on individuals and society. The number 
of SCI cases in 2016 was 27 million worldwide, which was 
predominantly due to falls and road traffic collisions [1]. 
Alarmingly, the number of new SCI cases in most countries has 
risen over the last few decades [2]. Patients often experience 
multiple sequalae to injury, such as loss of sensory and motor 
function below the site of spinal injury, and in the long term 
develop complex conditions, including chronic pain [3,4]. As 
mortality is rare and SCI often occurs at a young age, it can 
cost up to $5.4 million USD in lifetime care per patient [5]. To 
date, there are no effective treatments available for SCI and 
the understanding of the pathophysiology of SCI remains 
limited. Therefore, animal research models, mainly in the form 
of rodents have been developed and used [6,7].

There are many rodent models of SCI, ranging from 
hemisection injury in relation to gunshot and stab wounds, 
to contusion and compression injuries in close imitation of 
injuries from road traffic collisions and falls [6,7]. The most 
clinically relevant SCI model is contusion injury induced 
by force or spinal cord displacement [8]. Many of these 
preclinical studies have given rise to promising therapies that 
have transitioned into the clinical trials stage, but sadly their 
success has halted there. To date, there have been over 1,100 
clinical trials since 1986 aiming to improve outcomes for SCI 
patients [5]. Several studies have focused on drug therapies 
in the form of neuroprotection [9], neuroregeneration [10], 
and cell-based therapy [11]. Although the pre-clinical trials 
have demonstrated success and reproducibility in various SCI 

models, all have struggled to reproduce these results in large 
human trials.

Clinicians and researchers have suggested that the failure 
of SCI clinical trials is due to a variety of reasons within the 
clinical trials such as small sample sizes, heterogeneity in SCI 
severity (i.e. ASIA A vs ASIA D), and variations in spinal level 
studied (e.g. cervical vs lumbar) [9]. However, one factor that 
has not been fully addressed is the suitability and simplicity 
of animal SCI models for the clinical setting. The creation of 
traumatic SCI animal models has been designed to represent 
human patients as much as possible [12]. For example, in 
contusion injury, a transient force is applied onto the spinal 
cord. Not only is the mechanism of injury similar between rats 
and humans, but also the majority of the pathophysiological 
responses such as neurodegeneration, neuroinflammation 
and cyst formation are also similar [13]. Interestingly, this does 
not hold true for mice, who have several neuropathological 
differences after SCI when compared to rats. Mice have limited 
cyst formation, reduced glial scar formation and diminished 
blood-spinal cord barrier disruption after SCI [14]. Other 
sources of error may result from the frequent use of young, 
female adults that are healthy, unintoxicated and injured at 
the thoracic, rather than cervical level. This does not represent 
the average human SCI and may make the results clinically 
irrelevant.

Age

Many preclinical animal studies focus on SCI in young adult 
rodents. This neglects to account for the increasing number 
of older SCI patients, often owing to fall-induced tetraplegic 
injury [15]. It should not be assumed that young adults respond 
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similarly to older adults after SCI. One rodent study focusing 
on SCI-induced chronic central pain syndrome found that 
spontaneous locomotor recovery, completion of behavioural 
test training and development of neuropathic behaviour 
differed in the young adult. Recovery in the younger rodent (2 
months rat age, equivalent to approximately 15 years human 
age) progressed faster than middle aged rats (12 months rat 
age, equivalent to approximately 33 years human age) [16-
18]. Interestingly, it was shown that aged rats (15 months age, 
equivalent to approximately 41 years human age) with SCI 
had a higher vulnerability to mortality after SCI surgery and 
cell transplantation interventions [17]. However, in SCI clinical 
trials, the age of participants often ranges from 18 to 65 years 
old, and, in some studies, the maximum age reaches 80 years 
old [5]. This large age range in clinical trials could introduce 
heterogeneity in the cohort of SCI patients, with peaks of SCI 
incidence occurring at 16-30 years and again at over 65 years. 
A potential solution is to limit the age range in the clinical 
trials, but this would decrease the sample size and lengthen 
the duration of the study.

Sex

Although there are more male SCI patients, with a ratio of 
approximately 3.6 : 1 (males : females) [15], much of the pre-
clinical rodent research focuses on females. This is mostly 
due to their relative practical benefits, including manual 
bladder emptying following SCI. Additionally, their smaller 
size and less aggressive nature facilitates ease of handling 
and group housing [17]. However, it has recently been shown 
that recovery of motor function and preservation of grey and 
white matter after SCI was greater in females than males [19]. 
It was hypothesised that oestrogen may be a contributing 
neuroprotective factor, but a study with young adult male 
and ovariectomized female rats with SCI disproved this [20]. 
The effects of age and sex in pre-clinical SCI studies have been 
recently reviewed in detail [21]. Therefore, it is important to 
consider the inclusion of males in a program of preclinical 
studies for the development of a therapy.

Substance Abuse

Approximately 25% of SCI incidents involve patients that have 
consumed alcohol. Of these, 51% had a persistent drinking 
problem and/or had driven under the influence of alcohol 
[22]. Furthermore, one or more illicit drugs, such as marijuana, 
cocaine, and amphetamines, were found in the system of 44% 
of SCI patients [22]. This is unsurprising given alcohol and illicit 
drugs can impair vision, balance, reaction time, and judgment. 
They additionally alter behavioural responses, leading to 
aggression and neglect, all of which dramatically increases 
the risk of SCI [23,24]. Interestingly, 45% of SCI patients after 
injury onset exhibit some form of alcohol dependency, which 
is a far larger proportion than the 13% affected in the general 
population. Notably, this percentage amongst SCI patients 
decreases 17 months after injury [25]. 

Acute alcohol intoxication has been shown to exacerbate 
injury following trauma in an animal spinal contusion model 
by altering the biochemical response to injury and potentially 
worsening the secondary injury [26]. Furthermore, SCI patients 
with chronic pain may become heavily reliant on opioids, 
which can result in further misuse [27]. Substance abuse may 
also worsen pain and pressure ulcers, thereby increasing 
mortality [28]. Alcohol abuse can interfere with rehabilitation, 
lengthen hospital stay, and cause or exacerbate mental health 
disorders such as depression and anxiety [29]. Alcohol and 
illicit drugs if not declared or identified by SCI clinical trial 
investigators may interact with treatment and alter the drug 
treatment’s effect. For example, alcohol has serious side effects 
in isolation, yet it can additionally enhance the side effects 
of other medications such as opioids, leading to respiratory 
depression [30]. Therefore, drug screening and questionnaires 
may be required in SCI patient recruitment to clinical trials to 
ensure the therapy under investigation is not compromised 
or alternatively, investigate in preclinical studies whether SCI 
treatment is affected by alcohol and/or illicit drugs.

Spinal Level

Even though injury to the cervical spinal cord accounts for 
approximately 50% of clinical SCI cases, over 80% of pre-
clinical rodent SCI studies focus on thoracic level injury [31]. 
Experimenting with thoracic level injury decreases the risk 
of accidental rodent mortality and reduces the burden of 
post-operative care as only the hindlimbs are affected [8]. 
Furthermore, many behavioural tests, such as the universally 
used Basso, Beattie, and Bresnahan (BBB) locomotor score, 
predominantly focus on the hindlimbs. Importantly, there 
are a few rodent studies that focus on cervical level injury 
[32,33]. Behavioural testing for the forelimb is performed 
via the Montoya staircase and/or single pellet reaching test. 
While the training is difficult, it provides a reliable indication 
of the dexterity and sensorimotor function of the forelimbs 
and minimises false positive results, hence it has been 
recommended for use in the stroke field [34]. However, if 
researchers are interested in cervical injury, it is important to 
consider various ethical concerns given the greater impact 
of higher spinal level injuries [7]. As most clinical trials do 
not discriminate between spinal levels of injuries in patient 
recruitment, it is important to consider the differences in 
motor, autonomic and cardiovascular roles of the cervical 
and thoracic spinal cord. Notably, the thoracic spinal level 
has comparatively scarce grey matter and the presence of the 
sympathetic preganglionic neurones within the intermediate 
lateral horn of the grey matter [35-37]. Therefore, it is important 
to consider the inclusion of cervical level injury in preclinical 
animal studies.

Diet

Rats in the laboratory setting are often fed on a diet that 
provides optimum energy and nutrients for healthy living 
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[38]. It is currently not known whether a healthy diet would 
reduce injury severity and hasten recovery after SCI compared 
with a high fat, high carbohydrate Western diet. However, 
dietary therapies including a diet enriched with omega-3 
fatty acids, such as docosahexaenoic acid (DHA), have shown 
to be neuroprotective after spinal hemisection, contusion, 
and compression injuries [33,39]. By contrast, treatment with 
omega-6 fatty acids, such as arachidonic acid, can exacerbate 
hemisection injury [40,41]. Initiating the ketogenic diet 
(high fat, low carbohydrate), 4 hours post cervical unilateral 
contusion demonstrated significant improvement in forelimb 
function and reduced lesion size, suggesting that SCI patients 
should limit high carbohydrate content [42]. Therefore, more 
preclinical studies are required to understand how certain 
diets of high risk SCI patients may influence injury severity and 
recovery.

Traumatic Brain Injury

Often SCI patients suffer from trauma to other regions due to 
road traffic collisions and falls. Recent studies have shown that 
40-47% of SCI patients additionally have a clinical concomitant 
traumatic brain injury (TBI) [43,44]. Unsurprisingly, current SCI 
clinical trials omit patients that have a concurrent TBI since 
this co-presentation generally requires a longer hospital stay 
and adversely impacts functional improvement measures 
[45]. However, if SCI patients with TBI remain excluded from 
clinical trials, then treatment options for this group will remain 
sparse. The clinical attitude to this is mirrored in the paucity 
of preclinical studies, which show limited data. One study 
has addressed this gap by administering a unilateral cervical 
contusion alongside an ipsilateral or contralateral unilateral 
TBI [46]. They demonstrated a complex recovery dependent 
on the laterality of the SCI and TBI lesions. Therefore, unless 
more preclinical studies are conducted to understand 
the pathophysiology of concomitant SCI with TBI, a large 
proportion of SCI patients will be excluded from SCI clinical 
trials.

Conclusion

Given that the role of pre-clinical studies is to prepare for 
the clinical eventuality, it is important that all controllable 
variables are mimicked as closely as possible to ensure 
effective therapeutic translation. If this is not achieved, then 
any significant progress made in pre-clinical trials will be 
difficult to replicate successfully in SCI patients. To date, many 
of the factors that could affect the response to spinal cord 
trauma such as age, sex, drug intake prior and after injury, and 
head trauma are not included in the majority of pre-clinical 
SCI models. Unless the pre-clinical animal models represent 
the clinical setting, there will be more failures in SCI clinical 
trials.
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