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Introduction

Methylphenidate (MPD), more commonly known 
at Ritalin® or Concerta®, is a psychostimulant that is 
prescribed to treat behavioral disorders such as attention 
deficit hyperactivity disorder (ADHD) but is increasingly 
being misused and abused as a cognitive performance 
enhancer or recreational stimulant in normal individuals 
[1-5]. This has been driven by the rapid increase in 
patients diagnosed with Attention Deficit Hyperactivity 
Disorder (ADHD) for which MPD is the drug of choice [6-
10], as well as the rise in non-prescription use of MPD for 
academic enhancement and recreation [7,11-15].

This is of concern as MPD shares pharmacologic 
characteristics with other addictive psychostimulants 
such as amphetamine and cocaine, and could thus 
share similar addictive potential [6,16-20]. MPD, like 
amphetamine and cocaine, acts as an indirect dopamine 
agonist by inhibiting the dopamine reuptake at the pre-
synaptic terminal, leading to increased dopamine within 
the synaptic cleft [21-23]. Acute MPD exposure produces 
an increase in behavioral locomotor activity; chronic use 
elicits sensitization, tolerance, and/or withdrawal which 
are behavioral markers indicating a substance has the 
potential to elicit dependence [17,24-29]. Sensitization is a 
sustained increase in behavioral activity beyond the acute 
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effect following chronic administration of a substance  
abuse [30,31]. 

The central nervous system’s (CNS) reward system is 
known to participate in the long-term changes associated 
with substance abuse [32-37]. The circuit consists of 
multiple CNS structures, however the core pathway is the 
mesolimbic pathway in which dopaminergic neurons from 
the ventral tegmental area (VTA) project to the nucleus 
accumbens (NAc) and the ventral striatum, then onwards 
to the prefrontal cortex (PFC). The Nucleus Accumbems 
(NAc) is a reward circuit structure that is critical for 
motivation, emotion, limbic functions, and motor 
execution [30,38-43]. Non-specific and dopaminergic 
specific lesions to the NAc have shown it to be critical 
to regulating the response to MPD [44,45], however the 
role of the glutaminergic system remains uninvestigated. 
Glutaminergic signaling has been shown to modulate the 
long-term response between other reward/motive circuit 
nuclei [26,28,29,36,44,46-60], and it known to participate 
in inputs to the NAc, however its role in the acute and 
chronic response to MPD is unknown.

This study set out to determine if the glutaminergic 
system of the NAc participates in the response to MPD. To 
do this, 3 groups of animals were used: NAc intact controls, 
sham lesions, and specific glutaminergic chemical lesions. 
Animals were exposed to acute and chronic (repetitive) 
MPD and the response was monitored with a computerized 
monitoring system in an open field assay.

Methods

Animals

Twenty-four male Sprague-Dawley rats weighing 170-
180g were obtained from Harlan Labs (Indianapolis, IN, 
USA). Animals were individually placed in plexiglass cages 
(40.5x40.5x31.5 cm in dimension) in a soundproof room 
without disturbance to the experimental environment for 

4-5 days to acclimate prior to experimentation. These cages 
served as the home and test cage. Animals were maintained 
on a 12-hour light/dark cycle that began at 06:00. Food 
and water were provided ad libitum throughout the 
experiment, and the temperature was kept at 21 ± 2°C 
with a relative humidity of 37-42%. At the beginning of the 
experimental phase, the rats were weighed and randomly 
divided into three groups: NAc-intact controls (n=8), sham 
operation (n=8), and ibotenic acid chemical ablation of the 
glutaminergic system (n=8). This protocol was approved 
by our Animal Welfare Committee and carried out in 
accordance with the National Institute of Health Guide for 
Care and Use of Laboratory Animals. 

Experimental procedure (Table 1)

Rats were given 4-5 days to acclimate in their home 
cage before experimentation. On experimental day 1 (ED 
1-Sal) animals were weighed and 0.8 mL of 0.9% saline 
was administered intra-peritoneal (ip). All animals 
weighed 200-220 g at that time. Locomotive behavioral 
activity was recorded for 120 minutes post-injection to 
establish a baseline prior to surgical manipulation. On 
experimental day 2 (ED 2), the lesion and sham groups 
underwent surgery and were then allowed to recover 
for approximately 5 days (ED 3-7). On experimental 
day 8, saline was re-administered (ED 8-Sal) and post-
surgical locomotor activity was recorded for 120 minutes 
to compare with the pre-surgical baseline (ED 1-Sal). 
Starting on experimental day 9 (ED 9-MPD), daily 
injections of 2.5 mg/kg MPD (Mallinckrodt, Hazelwood 
MO) dissolved in 0.8 mL of 0.9% saline were administer 
for 6 consecutive days (ED 9-MPD to ED 14-MPD), and 
activity recorded for 120 minutes post-injection. This 
dose of 2.5 mg/kg MPD has been shown to be sufficient 
to elicit behavioral sensitization in rats in previous dose-
response experiments [27-29,48,51,61-68]. For the next 
3 days (ED 15-17), animals received no injections (the 
washout period). After the washout period (ED 18-MPD), 
the rats were re-challenged with MPD at the previous dose 

Group
Experimental Schedule

ED 1* ED 2 ED 3-7 ED 8* ED 9-14* ED 15-17 ED 18*

Control Saline Saline MPD Washout MPD re-
challenge

Sham Saline Surgery Recovery Saline MPD Washout MPD re-
challenge

Ibotenic acid 
lesion Saline Surgery Recovery Saline MPD Washout MPD re-

challenge

 Table 1: Methylphenidate administration schedule. The table shows the experimental treatment protocol for the 3 groups 
of rats used. Each group consisted of N=8 rats. Displayed are the experimental days (ED’s) either normal saline or methylphenidate 
(MPD) 2.5 mg/kg ip was administered according to injection protocol, in a standardized volume of 0.8 ml at 07:30. * indicates day 
rats were behaviorally recorded post-injection. The experiment lasted 18 experimental days. The experimental schedule began after 
several days of acclimatization of the rats to their home/experimental cages.
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of 2.5 mg/kg and behavioral activity was observed for 60 
minutes (the expression phase). All boluses were given at 
approximately 07:30 in the morning in 0.8 mL volumes.

Surgical Procedure (ED 2)

On ED 2, the sham operation group, and the ibotenic 
acid group animals were anaesthetized with 60 mg/ kg 
pentobarbital and placed in the stereotactic apparatus. An 
incision was to expose the skull. For surgery, holes were 
drilled in the skull 1.7 mm anterior from the bregma and 
1.6 mm lateral to the midline bilaterally based on the co-
ordinates derived from Paximos and Watson Rat Brain 
Atlas [69].

Sham operation: For the sham group, the animal was 
anesthetized, the skin opened, holes drilled in the skull, 
and a 27G cannula was inserted bilaterally to a depth of 6.8 
mm but no agent administered. The cannulas were then 
removed, and the incision closed with wound staples.

NAc Glutaminergic system ablation: For the 
glutaminergic ablation group, ibotenic acid, a glutaminergic 
toxin, was employed [70-74]. A 27G cannula was inserted 
bilaterally to a depth of 6.8 mm. 5 µg of ibotenic acid was 
dissolved in 5 µl of 0.9% normal saline was slowly infused 
then the cannula left in place for 6 minutes to allow for 
full diffusion. The cannulas were then removed, and the 
incision closed with wound staples.

Apparatus

Behavioral locomotive activity was recorded using the 
open field computerized animal activity monitoring system 
(CAAM, AccuScan Instruments, Inc., Columbus OH). The 
CAAM system consists of 2 arrays of 16 infrared light 
beams with sensors on the opposite side, spaced every 2.5 
cm that cross orthogonally through the plexiglass cage. 
Sensor polling frequency was set at 100 Hz. Movement 
of the rats interrupted the infrared light beams, and each 
beam-break detected by a sensor was collected as an event 
by the AccuScan Analyzer and transferred to a computer. 
Events over a 5-minute period were summed, giving 12 
5-minute bins for each hour of observation. These bins 
were transferred to the OASIS data collecting software and 
three indices of behavioral locomotion were compiled for 
each collection period: total travelling distance (TD)- all 
forward locomotion in cm, horizontal activity (HA)- the 
overall movement in the lower level of the cage, and the 
number of stereotypic movements (NOS)- episodes of 
purposeless, repetitive movement in the upper level of the 
sensors separated by at least 1 second.

Histology (Figure 1)

At the conclusion of the experiment, animals were 
overdosed with sodium pentobarbital and perfused with 
10% formaldehyde. The brains were removed stored in 
10% formaldehyde. 60 µm thickness coronal sections were  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Histological reconstruction of NAc lesions. This figure shows the histologic reconstruction of the NAc lesions, 
denoted below each series of sections, on rat atlas plates (Paxinos and Watson [69]) in relation to the anterior distance from bregma 
in millimeters (mm). The black rings in ibotenic acid lesion sections represent the canula placement for injection; the gray fields 
behind them represent the approximate area affected.
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cut, stained, and scanned with a high-resolution scanner 
to identify lesion size and location correlated to the NAc 
using the Paximos and Watson rat brain atlas [69] (Figure 
1).

Data analysis

Rat behavioral locomotive activity was quantified by three 
compiled indices of movement (HA, TD, NOS) obtained 
in twelve 5-minute bins collected the hour after injections 
for each rat were averaged across each experimental group 
based on the experimental day to allow for comparisons. 
Post-surgical manipulation effects on baseline behavioral 
locomotor activity were determined by comparing the 
animal’s activity after a saline injection before and after 
the surgical intervention (ED 8-Sal vs. ED 1-Sal). The acute 
effects of MPD were determined by comparing the first day 
of MPD administration to the post-surgical baseline (ED 
9-MPD vs. ED 8-Sal). The effects of repetitive (chronic) 
MPD exposure over 6 consecutive days on behavioral 
locomotor activity were determined by comparing the 
final day of administration to the first, i.e. the induction 
phase (ED 14-MPD vs. ED 9-MPD). The effects of chronic 
MPD exposure following a washout period on behavioral 
locomotor activity were determined by comparing 
MPD re-challenge to the initial administration, i.e the 
expression phase (ED 18-MPD vs. ED 9-MPD) (See 
Table 1). Significance of change among these within-
group comparisons was determined by ANOVA, with 

repeated measures with adjustments for correlation 
among measurements within each animal. Post ad hoc 
comparisons were used to estimate changes between days 
within groups. A p-value<0.05 was considered statistically 
significant. The effects of the ibotenic acid lesion were 
determined by comparing the ibotenic acid lesion group to 
both the control and sham groups on each of the recording 
days (ED 1-Sal, ED 8-Sal, ED 9-MPD, ED 14-MPD, and 
ED 18-MPD). Significance of change among the between-
group comparisons was determined with Turkey-Kramer 
Honest Significant Difference (HSD) post hoc test. A 
p-value<0.05 was considered statistically significant.

Results 

Effect of MPD on activity (Figure 2)

Figure 2 shows the effect of the MPD administration on 
total distance (TD) traveled on the five recording days (ED 
1-Sal, ED 8-Sal, ED 9-MPD, ED 14-MPD, and ED 18-MPD) 
for the NAc control, sham, and ibotenic acid lesion groups. 
Surgery with or without chemical intervention to the 
NAc (ED 8-Sal vs. ED 1-Sal) did not lead to a statistically 
significant change in TD for the sham and ibotenic acid 
lesion groups as compared to the control group (Figure 
2). Similar results were seen in horizontal activity (HA) 
and number of stereotypic movements (NOS). This 
observation indicates that animal handling, injection 
volume, and injection procedure were consistent, and  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Total Distance within groups. This figure shows the mean total distance (TD) traveled and standard error for each of 
the groups on experimental day (ED) 1, 8, 9, 14, and 18. Each group consists of n=8 rats. * indicates statistically significant (p<0.05) 
difference between ED 8 baseline and ED 9 MPD. ǂ indicates statistically significant (p<0.05) difference between ED 9 and ED 14. 
Ϫ indicates statistically significant (p<0.05) difference between ED 9 MPD and ED 18 MPD. 
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that the surgical intervention did not modulate baseline 
activity. The administration of 2.5 mg/kg MPD yielded a 
statistically significant (* p<0.05) increase in TD following 
MPD exposure for all groups relative to their post-
surgical baseline (ED 9-MPD vs. ED 8-Sal) (Figure 2). 
Similar results were seen in HA and NOS. Administration 
of a repetitive 2.5 mg/kg MPD dose for an additional 
five consecutive days resulted in a further statistically 
significant (ǂ p<0.05) increase in TD beyond the acute 
effect of MPD for all groups (ED 14-MPD vs. ED 9-MPD) 
(Figure 2). Similar results were seen in HA and NOS. This 
further augmentation in locomotive behavior following 
repeated exposure to MPD confirms that 2.5 mg/kg MPD 
induces behavioral sensitization. Re-challenge with the 
same 2.5 mg/kg MPD dose after a three-day washout 
period following chronic MPD exposure (six days of MPD 
administration) caused all groups to again show a further 
statistically significant (Ϫ p<0.05) increase in TD as 
compared to acute MPD administration (ED 18-MPD vs. 
ED 14-MPD) (Figure 2). Similar results were seen in HA 
and NOS. This continued augmentation of the response to 
MPD even after drug washout is the continued expression 
of sensitization to chronic psychostimulant use, i.e. the 
expression phase. 

Effect of ibotenic acid lesion on TD (Figure 3)

Figure 3 shows the effects of ibotenic acid lesions to 
the NAc on TD by comparing each group (control, sham, 

and ibotenic acid lesion) to the other two groups on each 
experimental day. No significant difference was seen 
between any of the groups on any of the experimental 
days, i.e. all groups behaved similarly in response to MPD 
exposure.

Effect of ibotenic acid lesion on HA (Figure 4)

Figure 4 shows the effects of ibotenic acid lesions to the 
NAc on HA by comparing each group (control, sham, 
and ibotenic acid lesion) to the other two groups on each 
experimental day. Compared to the control and sham 
groups, the group that received lesions to the NAc showed 
a significant difference between the control (ǂ p<0.05) 
and the sham (* p<0.05) groups in response to MPD both 
acutely (ED 9-MPD) and chronically (ED 14-MPD and ED 
18-MPD). 

Effect of ibotenic acid lesion on NOS (Figure 5)

Figure 5 shows the effects of ibotenic acid lesions to the 
NAc on NOS by comparing each group (control, sham, 
and ibotenic acid lesion) to the other two groups on each 
experimental day. No significant difference was seen 
between any of the groups on ED 9-MPD or ED 14-MPD. 
On ED 18-MPD, a significant difference was seen between 
the sham lesion group and both the NAc intact control (Ϫ 
p<0.05) and the ibotenic acid lesion groups (* p<0.05). 
No significant difference was seen between the control and 
ibotenic acid lesion group. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Total distance between groups. This figure shows the mean total distance (TD) traveled and standard error for each 
of the experimental days (ED) 1, 8, 9, 14, and 18 for each group. No significant difference is seen between groups.
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Figure 4: Horizontal activity between groups. This figure shows the mean horizontal activity (HA) and standard error for 
each of the experimental days (ED) 1, 8, 9, 14, and 18 for each group. ǂ indicates statistically significant (p<0.05) difference between 
the control group and the ibotenic acid lesion group. * indicates statistically significant (p<0.05) difference between the sham lesion 
and the ibotenic acid lesion group. No difference is seen between the control and sham groups.

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 5: Number of stereotypic movements between groups. This figure shows the mean number of stereotypic 
movements (NOS) and standard error for each of the experimental days (ED) 1, 8, 9, 14, and 18 for each group. * indicates 
statistically significant (p<0.05) difference between the sham lesion and the ibotenic acid lesion group. Ϫ indicates statistically 
significant (p<0.05) difference between the sham lesion and the control group. No difference is seen between the control and 
ibotenic acid lesion groups.
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Discussion

This experiment was conducted to determine the role of 
glutaminergic signaling in the nucleus accumbens (NAc) 
in the response to acute and chronic methylphenidate 
(MPD). The findings of this work show that in NAc intact 
animals, 2.5 mg/kg MPD results in an acute increase in 
activity in all locomotor indices studied (TD, HA, NOS, 
Figure 2), and that chronic repetitive exposure results in 
behavioral sensitization- the further significant increase 
above the acute effect (Figure 2). This effect is clearly 
modulated following a specific bilateral glutaminergic 
lesion to the NAc with ibotenic acid, with HA specifically 
showing a consistent significant difference from the NAc 
intact control and sham groups following both acute 
and chronic 2.5mg/kg MPD exposure (Figure 4). This 
difference was absent in the other indices (TD and NOS, 
Figures 3 and 5 respectively). The sham lesion alone shows 
a difference from the control and ibotenic lesion groups, 
which appears to be a statistical artifact as the magnitude 
is similar to the NAc intact controls and the ibotenic acid 
lesion group and the difference is not seen on ED 14-MPD 
when the chronic effect of MPD is also manifested.

The NAc is a structure located near the anterior 
commissure that is critical for the motivation and reward-
seeking behavior. It is composed primarily of dopaminergic 
medium spiny neurons (MSN’s) and is divided into a shell 
and a core that mediate different functions [75-80]. The 
NAc receives input primarily from the VTA, in addition 
to inputs from the substantia nigra, the amygdala, the 
hippocampus, and the PFC. The NAc outputs ascend to 
various basal ganglia and midbrain structures including 
the substantia nigra, the VTA, the ventral pallidum, the 
thalamus, the subpallidus, and the stria terminalis [78,81-
84].

Previously reported lesions to the NAc have confirmed 
its role in mediating the behavioral response to MPD. 
Psychostimulants such as MPD cause an increase in 
dopaminergic transmission from the VTA to the NAc, and 
increased dopamine within the NAc leads to increased 
locomotion [85-87]. Direct chronic microinjection of 
dopaminergic agonists such as amphetamine, cocaine, or 
morphine into the NAc can induce sensitization [38,88-
96], suggesting that the NAc is involved in the induction 
of behavioral sensitization. Non-specific lesions to the 
NAc have been shown to lead to an enhanced acute effect 
of MPD, but absent long-term behavioral changes such as 
sensitization following chronic exposure [44]. This is also 
seen with amphetamine, cocaine, and nicotine [97-103]. 
Dopaminergic lesions to the NAc have produced more 
complex behavioral changes, with some animals exhibiting 
no increase in locomotor activity acute MPD exposure and 
others showing a significantly elevated locomotor activity 
following MPD exposure [45]. Animals that responded 
to MPD acutely did not develop behavioral sensitization, 

while those that showed no behavioral change following 
the dopaminergic lesion did show behavioral sensitization 
[45]. This work was noted to not determine lesion accuracy 
which could explain the dichotomy of animal responses, 
however it still indicated that accumbal dopaminergic 
signaling is critical for the response to psychostimulants.

Glutaminergic signaling in the NAc has been unexplored 
till this present study, but has been shown to be critical in 
other reward circuit nuclei [26,28,29,36,44,46-60]. This 
study found that following specific glutaminergic ablation 
of the NAc by ibotenic acid, animals showed the same 
general response to acute and chronic MPD exposure as 
the control and sham NAc lesion groups, with an acute 
increase in behavioral activity following MPD and then 
further augmentation with chronic exposure (Figure 2). 
However, when the different behavioral expressions (HA, 
TD, NOS) to MPD exposure were compared between 
groups, a significant attenuation in the behavioral 
activity comprising forward motion as measured by HA 
was seen following glutaminergic-specific lesions to the 
NAc (Figures 3-5). This attenuation of HA indicates that 
glutaminergic signaling in the NAc is critical in modulating 
behavior and influences signaling pathways differently. 
This fits with the current knowledge that glutaminergic 
inputs to the NAc come from other reward circuit nuclei 
[104,105], and with other work showing that glutaminergic 
signaling is responsible for modulating the core effect of 
MPD at other reward circuit nuclei [26,28,29,36,44,46-
60]. It also seems to indicate that different subcortical 
circuits govern different behavioral responses, as animals 
with glutaminergic lesions to the NAc, HA exhibited 
significantly less behavioral activity in response to both 
acute and chronic MPD exposure.

Previous work initially determined the NAc shell to be 
critical for the excitatory response to psychostimulants, 
as it showed the greatest response in response to their 
administration [90,95,106,107]. However, it is increasingly 
being recognized that the NAc core also participates in the 
response to psychostimulants [108-111], and that both 
play a role in motivation and behavioral actions [112-114]. 
The results seen here agree with emerging work showing 
that while the NAc core and shell are anatomically distinct, 
distinct circuits between them govern different behavioral 
responses [108-114]. Targeting a spherical shell structure 
with a chemical lesion presents a substantial technical 
problem and further interrogation of these distinctions 
will require further work. The strength of the paper 
is the using of local injection of specific neurotoxin to 
eliminate the glutaminergic system in the NAc. Additional 
experiments are needed to use specific neurotoxin to study 
other neurotransmitters signaling. 

Conclusion

The nucleus accumbens (NAc) is a rewards circuit 
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structure that is critical for the response to MPD. It is 
divided into a shell and core that serve distinct roles in 
the response to psychostimulants such as MPD. Three 
different locomotive behaviors were studied, and it was 
found that lesions to the glutaminergic signaling pathways 
of the NAc result in significant attenuation of forward 
motion HA compared to control and sham groups. This 
difference was not seen in the other behaviors (TD and 
NOS), indicating that different NAc circuits govern specific 
behavioral expressions to acute and chronic MPD.
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