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Pediatric NAFLD and Why It Is a Pressing 
Issue

Nonalcoholic fatty liver disease (NAFLD), a spectrum 
of pathologies ranging from simple steatosis to fibrosis 
and cirrhosis, is the most common cause of chronic liver 
disease, affecting over 80% of adults with obesity [1], one 
third of obese children ages 3-18 in North America [2] 
and ~10% of the general pediatric population [2]. NAFLD 
in children progresses more rapidly than in adults [3-7], 
often leading to cirrhosis and transplantation in early 
adulthood [6]. Half of children presenting with NAFLD 
have already progressed to the more serious form of 
nonalcoholic steatohepatitis (NASH) at time of diagnosis 
[2,8,9] and their survival, even after transplantation, is 
shortened when compared with the general population [5]. 
Maternal obesity is a significant risk factor for pediatric 

NAFLD [10,11]. However, a major limitation in this field is 
the lack of fundamental understanding as to how maternal 
diet and/or obesity sets liver physiology and development 
of the immune system, beginning early in life, on a course 
toward NAFLD.

NASH is characterized by inflammation, oxidative 
stress, mitochondrial dysfunction, elevated levels of 
pro-inflammatory cytokines and fibrosis. Data from our 
studies in a nonhuman primate model of maternal obesity 
[10,12-18], combined with findings from other studies 
in mice [19] and humans [20], indicate that risk factors 
for NAFLD begin in utero, altering tissue function at the 
cellular and molecular levels. Persistence of liver steatosis 
and inflammation in juvenile animals switched to a healthy 
diet at weaning suggests that developmental changes 
have permanent epigenetic effects which alter metabolic 
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outcomes and increase vulnerability to accelerated 
fibrosis in offspring [10,11,21]. DNA methylation, covalent 
modification of histones, and the expression of non-coding 
RNA are epigenetic phenomena found in livers from 
children [22-25], adults [26-33], and rodents [34-39] with 
NAFLD (reviewed recently by Campisano, et al. [40]). Still, 
insights into the mechanisms by which maternal diet and 
obesity prime the immune system toward inflammation 
and liver damage are lacking.

In NAFLD, portal infiltration of macrophages is an 
early event predicting disease progression, and occurs 
in the steatotic liver before inflammation or fibrosis 
develops [41]. Hepatic inflammation is driven, in part, by 
activated endogenous liver macrophages (Kupffer cells), 
innate immune cells arising from fetal liver, and from 
infiltrating monocyte/macrophages arising from bone 
marrow precursors [42,43]. Kupffer cells and monocyte/
macrophages can either promote hepatic inflammation and 
fibrosis (M1-like, pro-inflammatory) [10,44-54], or resolve 
inflammation and prevent progression to fibrosis (M2-like, 
pro-restorative/reparative) [55]. In children with NASH, 
numerous activated macrophages are found in the spaces 
between damaged hepatocytes [56].  We (and others) have 
shown that mice exposed to a maternal “Western-style” 
diet (WD) have increased pro-inflammatory macrophage 
activation in the liver and accelerated hepatic fibrosis as 
adults [57]. Further, our published data in a nonhuman 
primate model demonstrated increased expression of 
pro-inflammatory cytokines (IL1B and TNFA) in hepatic 
macrophages isolated from 1-year-old offspring born to 
WD-fed mothers and weaned to a chow diet [14].  Whether 
maternal diets during gestation or lactation alter the fate of 
developing macrophage precursors remains an important 
unanswered question.

Gut Microbial Dysbiosis in Early Life 
Influences the Developing Immune System

Evidence suggests maternal and postnatal factors that 
impact the developing infant gut microbiome include 
maternal diet [58], infant diet in early life [59], antibiotic 
use, and delivery by Caesarean section [60,61]. Studies 
in animals [62-65] and neonates [66,67] demonstrate 
that “pioneering” gut bacteria in early life profoundly 
shape development of the innate and adaptive branches 
of the immune system, with persistent effects on immune 
function later in life [68,69]. Because both the gut 
microbiome and gut immune cells develop and mature 
during the neonatal period [70,71], even a brief disruption 
to the microbial community structure during this 
window can induce immunological changes that persist 
into adulthood [69]. For example, Olszak, et al. showed 
colonizing neonatal - but not adult - germ-free mice with 
pioneering microbes protects from immune cell-mediated 

pathology in adulthood [69]. Together, these studies 
demonstrate the critical importance of initial colonizers to 
the gut microbiome – immunity axis [72]. 

Most microbiota-driven immune alterations are assumed 
to be postnatal effects induced by the neonate’s own 
microbiota [73-75]. However, detection of bacteria in 
the placenta, amniotic fluid, and meconium suggests the 
possibility of fetal colonization during gestation, which 
alters development of the naïve fetal innate immune system 
[76] and impacts maturation of the hematopoietic system 
[77]. Gomez de Agüero, et al. showed this by transiently 
colonizing germ-free pregnant dams with Escherischia 
coli, which led to enhanced ILC3 and F4/80+ CD11c+ 
mononuclear cell populations in the gut of neonates, 
reprogrammed intestinal transcriptional profiles, and 
increased expression of genes involved in metabolism, 
oxidative stress, and innate immunity [78]. Moreover, 
bacterial  colonization in early life influences immune 
development in primary lymphoid organs beyond the gut, 
including in the bone marrow [77]. Gut microbial and non-
microbial ligands, including  short-chain fatty acids (SCFA) 
and bile acids, induce a memory response in innate cells 
mediated by pattern recognition receptors (PRRs), which 
recognize microbe- or pathogen-associated molecular 
patterns (MAMPs or PAMPs) [79]. Pattern recognition 
receptors include families of Toll-like receptors (TLRs) 
and nucleotide-binding oligomerization domain (NOD)–
like receptors (NLRs). Microbe- and pathogen-associated 
molecular pattern recognition via these PRRs affects 
differentiation and function of myeloid and lymphoid 
lineage immune cells [80-82], inducing both myeloid 
bias in long-term hematopoietic stem cells within the 
bone marrow [83] and immune memory in differentiated 
descendents [84]. Lipopolysaccharide (LPS), a canonical 
ligand for TLR, dose- and duration-dependently induces 
tolerance or potentiates innate immune memory [85]. 
LPS isolated from E. coli has immunostimulatory activity 
leading to endotoxin tolerance, which is inhibited by LPS 
from Bacteroides [86], supporting the hypothesis that 
in early life, the abundance ratio of Enterobacteriaceae 
to other commensals critically regulates immune 
development and health in later life.

In addition to bacteria, bacteria-derived dietary 
metabolites transfer from mother to fetus, affecting 
immune development. In mice, feeding pregnant dams 
dietary fiber or acetate alone protected offspring from 
allergic airway inflammation [87] and maternally-derived 
SCFAs played a role in Foxp3+ regulatory T cell generation in 
the neonatal thymus [88].  Maternal gut bacterial products 
other than SCFAs may have effects on programming 
immunity in the offspring. Metabolites including taurine, 
polyamines, retinoic acid, and indoles (byproducts of 
tryptophan catabolism) have roles in maintaining immune 
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Figure 1: Early pioneering bacteria induce metabolic reprogramming of innate immunity and increase susceptibility 
to pediatric NAFLD in offspring. Maternal Western-style diet, high in fat, sugar, and cholesterol, alters initial 
bacterial colonization in infants.  By reshaping the ratio of dominant bacterial species in the gut during early life, the 
composition of the lipopolysaccharide (LPS) pool, bacterial metabolites, short-chain fatty acids (SCFA), microbe-
associated molecular patterns (MAMPs) and pathogen-associated molecular patterns (PAMPs) are also varied. These 
altered microbial signals induce expansion of hematopoietic stem and progenitor cells, myeloid lineage skewing, and 
inflammatory polarization of monocyte/macrophages recruited to the steatotic liver. Therefore, a shifted ratio of 
Enterobacteriaceae to acidophilic commensals, such as Bacteroides or Bifidobacterium, may mediate susceptibility 
to NAFLD in childhood and accelerate disease progression through “training” of innate immune cells. This figure was 
generated with the assistance of BioRender (www.biorender.com).
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homeostasis, gut barrier integrity, and arginine levels, as 
well as regulating the inflammasome [89].

Enterobacteriaceae are an important family of 
Gammaproteobacteria, a class of aerobic, LPS-producing 
pioneering microbes that are abundant in the stool from 
full-term, vaginally-delivered newborns [90].  E. coli and 
Enterobacter, facultative anaerobic pioneering bacteria, 
rapidly grow and metabolize lactose from breast milk 
to acetate and other SCFAs and create a reduced acidic 
environment. This environment is favorable for later 
colonization by slower-growing, anaerobic acidophiles 
such as Bacteroides, Bifidobacterium, and Clostridium 

[91,92], which consume most of the available sugar and 
excrete large amounts of acetate and other SCFAs [93]. 
Unlike in adults, early exposure to Enterobacteriaceae 
in newborn rodents and humans provides LPS-driven 
inflammatory challenges important for training or 
“priming” the early immune system, and protecting against 
excessive inflammatory, autoimmune, and metabolic 
disorders later in life. LPS/endotoxin binds to receptors on 
innate immune cells, including TLR4, and modulates the 
host innate immune response though mechanisms such as 
endotoxin tolerance or trained immunity [94-96]. Subtypes 
derived from specific Bacteroides species exhibit lower 
endotoxicity than LPS isolated from other enteric bacteria 
[97]. Immune sequelae linked to early life dysregulation 
of the Enterobacteriaceae to Bacteroidetes balance were 
recently described in human infants. Vatanen, et al. 
elegantly showed Bacteroides species, in the microbiota of 
infants from countries with high susceptibility to allergies 
and type 1 diabetes (T1D), produced an LPS subtype that 
inhibited immunostimulatory activity of E. coli LPS in vitro, 
compared with those infants colonized predominantly by 
Enterobacteriaceae. In vivo, intraperitoneal injection of 
E. coli-derived LPS led to endotoxin tolerance in immune 
cells and delayed onset of T1D in a mouse model, whereas 
LPS from Bacteroides was not protective [86].

The impact of maternal obesity on pioneering bacteria 
in infants was studied by Lemas, et al. [98] who found 
reduced abundance of Gammaproteobacteria in stool 
from 2-week-old infants born to obese mothers, when 
compared with microbiota from infants born to normal 
weight mothers [99].  Soderborg, et al. colonized germ-
free mice with microbes from infants born to obese 
mothers, and these mice, when challenged with a short-
term postnatal WD, exhibited elevated markers of 
inflammation and endoplasmic reticulum stress in liver, 
as well as accelerated obesity and NAFLD. Moreover, these 
animals exhibited dampened LPS-induced inflammation 
in bone marrow-derived macrophages (BMDMs) and 
impaired phagocytosis [99]. A unique feature of pediatric 
NAFLD is the predilection for children to deposit fat and 
develop inflammation in the periportal region vs. the more 

classic perivenular distribution seen in adults [4,100]. 
This difference is poorly understood, but clinically relevant 
because periportal inflammation is associated with 
advanced liver disease [101]. Germ-free mice colonized 
with microbiota from infants exposed to maternal obesity 
showed histological evidence for increased periportal 
inflammation, even while consuming a control chow diet 
[99].  These provocative findings suggest a mechanistic role 
for the early life gut microbiota in priming innate immune 
dysfunction prior to the development of childhood obesity.

Dietary Exposures and Epigenetic Rewiring 
Skew Hematopoiesis to Promote Chronic 
Inflammation

The fetal liver is the major hematopoietic organ of the 
developing immune system. During gestation, the fetal 
liver is seeded with monocytes, which are progenitors of 
liver resident Kupffer cells [102,103], and hematopoietic 
stem and progenitor cells (HSPCs) which migrate to 
the bone marrow, where most stay for the remainder of 
life [104]. HSPCs in the bone are capable of producing 
all blood cells of the lymphoid (adaptive immune) and 
myeloid (innate immune, erythroid, platelets) lineages, 
including monocytes and their macrophage descendants. 
HSPC-derived monocytes in the fetal liver give rise to 
Kupffer cells, which maintain self-renewing capabilities 
throughout life [102,105]. By contrast, infiltrating tissue 
macrophages differentiate from monocytes that are 
continuously generated from HSPCs in the marrow and 
recruited to the liver by damage signals (monocyte/
macrophages) [106]. Diet-induced gut microbial dysbiosis 
shapes development and function of the immune system, 
in part by regulating the differentiation of HSPCs [107]. 
Intriguingly, maternally-derived HSPCs have been 
detected in cord blood [108]. Whether these maternal cells, 
programmed by a poor diet, seed the fetal bone marrow 
and educate the developing immune system, or whether 
an obesogenic maternal diet and resultant gut microbial 
dysbiosis directly program neonatal HSPCs to promote 
NAFLD are questions warranting further research. 

Myeloid cells (monocytes/macrophages), innate 
lymphoid cells (including NK cells), and bone marrow 
progenitors [109] exhibit innate immune memory. This 
memory involves epigenetic rewiring after an initial 
inflammatory insult and a rapid, non-specific enhanced 
response to subsequent exposures [109]. Microbial signals, 
including peptidoglycans [110], Bacillus Calmette-Guérin 
[111], and β-glucan [83], alter epigenetic modifications in 
HSPCs, induce long-lasting changes in cellular lineages, 
and  stimulate inflammatory priming of differentiated 
myeloid cells [77]. The induced memory may persist 
from weeks to months [112,113]. In fetal mice, exposure 
to maternal WD remodels fetal liver HSPCs to exacerbate 
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the inflammatory immune response, skew commitment 
to the myeloid lineage, and favor differentiation at the 
expense of self-renewal [114]. Later-life consequences 
of this early adaptation can be observed in adult WD-
fed mice, where HSPCs are biased toward the myeloid 
lineage and generate a large pool of pro-inflammatory 
cells [115]. Moreover, in response to short-term post-natal 
WD exposure, Christ, et al. found upregulation of genes 
involved in cellular proliferation, skewing of granulocyte-
monocyte progenitors toward the monocytic cell lineage, 
and increased availability of enhancer regions (including 
TLR4) [116]. 

In our mouse model of maternal WD, we showed elevated 
fumarate in liver macrophages  and BMDMs from adult 
offspring of obese pregnancy [117]. This metabolic change 
triggers epigenetic remodeling toward a pro-inflammatory 
phenotype.  Innate immune memory is characterized 
by a potentiated response to inflammatory stimuli, 
accompanied by a metabolic shift to aerobic glycolysis 
and a dysfunctional TCA cycle, termed “metabolic re-
programming” [118]. Metabolic and epigenetic re-
programming occurs in myeloid cells [119,120], including 
HSPCs [83] and their descendants, and alters transcription 
of genes in inflammatory, immune, and metabolic 
pathways [116]. TCA cycle intermediates, such as succinate 
and fumarate, promote expression of genes supporting 
the pro-inflammatory (M1-like) macrophage phenotype 
through stabilization of hypoxia-inducible factor-1α [121-
123] and histone acetylation of glycolytic enzyme genes, 
including hexokinase 2 and lactate dehydrogenase [124]. 
Moreover, α-ketoglutarate increases expression of genes 
promoting a reparative (M2-like) phenotype through 
epigenetic regulation [125,126]. 

Finally, Wang, et al. showed that DNA hypermethylation 
at the peroxisome proliferator-activated receptor γ1 
promoter in adipose tissue macrophages suppressed the 
ability of these cells to adopt an alternatively activated, 
reparative phenotype (characterized by elevated “M2” 
markers such as ARG1, MRC1, and CLEC10A). Moreover, 
failure to adopt an M2-like phenotype was associated with 
weight gain and insulin resistance in mice fed a chronic 
high-fat diet [127]. These studies suggest that HSPC 
immunometabolism, even in early life, contributes to 
programming adult metabolic disease when dysregulated 
by exposure to an obesogenic maternal diet. It will be 
important for future work to determine whether similar 
mechanisms act in bone marrow and the liver. 

In conclusion, pediatric NAFLD is a growing problem 
worldwide with a complex pathophysiology. Therefore, it 
is critical to elucidate factors driving development of the 
neonatal immune system, particularly in bone marrow 
and liver, to determine how maternal obesity alters infant 

immunity and drives development of pediatric NAFLD.  
Mechanistic studies, including perinatal maternal or infant 
supplementation with specific bacteria, could identify 
bacterial strains or metabolic functions responsible for 
pro-inflammatory priming of the early innate immune 
system.  Going forward, it will be important to advance 
our knowledge on how the immune system senses changes 
in early dietary metabolite composition to either initiate 
an appropriate inflammatory response or promote 
inflammatory pathophysiology, such as NAFLD. We must 
1) determine whether  dietary metabolites other than 
maternal SCFAs are transferred to the fetus in utero, or to 
offspring in early life, and characterize metabolite effects 
on development of the immune system in the fetal liver 
and/or offspring bone marrow; and 2) evaluate the impact 
of maternal metabolites on colonization and development 
of the infant intestinal microbiota and test if these early 
bacteria exert life-long epigenetic changes in HSPCs 
and their macrophage descendants, accelerating disease 
pathophysiology. Comprehensive understanding of how 
maternal diet and obesity influence development of the 
innate immune system continues to be a major challenge. 
But, hopefully, this work will lead to early interventions 
to prevent numerous metabolic diseases associated with 
inflammation, including obesity, cardiovascular disease, 
and NAFLD pathophysiology in children.  
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