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Introduction

Thalidomide, lenalidomide and pomalidomide are 
synthetic immunomodulatory drugs (IMiDs) that have 
recently drawn attention in both clinics and basic research 
[1]. Thalidomide was synthesized from glutamic acid and 
was banned due to its teratogenicity in pregnant women 
[1]. Lenalidomide is a 4-amino-glutamyl analogue of 
thalidomide and is approved for the treatment of certain 
hematologic malignancies. Lenalidomide is used for the 
treatment of lower-risk red blood cell (RBC) transfusion-
dependent myelodysplastic syndromes (MDS) with 
deletion of chromosome 5q (del(5q)) with or without 
additional cytogenetic abnormalities [2-4]. MDS patients 
with del(5q) exhibit much higher hematologic and 
cytogenetic responses than those without del(5q) [3-6]. 
In contrast to lower-risk MDS patients, the response to 

lenalidomide monotherapy is poor in patients with higher-
risk del(5q) MDS and acute myeloid leukemia (AML), 
especially in those with TP53 mutations [7,8]. Therefore, 
lenalidomide in combination with other drugs are being 
evaluated. Indeed, better responses are observed in patients 
with higher-risk del(5q) MDS and AML who are treated 
with lenalidomide in combination with hypomethylating 
agent azacitidine than lenalidomide monotherapy [8-
11]. Despite a high response to lenalidomide in lower-
risk del(5q) MDS, half of the patients relapse within 2-3 
years, which may be associated with the malignant MDS 
stem cells [5,12,13]. Accumulating evidence implicate that 
lenalidomide selectively inhibits the del(5q) clone, which 
is associated with modulation of several haploinsufficient 
genes that are localized on the deleted 5q regions, such as 
cell division cycles 25C (CDC25C) and protein phosphatase 
2 phosphatase activator (PTPA, also known as PP2A), 
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secreted protein acidic and cysteine rich (SPARC), 
ribosomal protein S14 (RPS14) and miR-145 [14-21].

In addition to the direct effects on the pathological MDS 
clones, lenalidomide also exerts pleiotropic effects on 
immune cells [22,23]. In response to lipopolysaccharide 
(LPS), peripheral blood mononuclear cells (PBMC) secreted 
less tumor necrosis factor alpha (TNFα), interleukin 1 beta 
(IL-1β) and interleukin 6 (IL-6) but more interleukin 10 
(IL-10) in the presence of lenalidomide [24]. T cells express 
T cell receptor (TCR) and coreceptors (i.e. CD4 and CD8) 
that recognize the antigen peptides presented by major 
histocompatibility complex (MHC) on antigen presenting 
cells (APC). Upon recognizing antigen/MHC complex, TCR 
and coreceptors, together with the co- stimulatory signal 
provided by CD28 on T cells and B7 on APC, activate 
signaling pathways that lead to proliferation, survival, 
differentiation, cytokine secretion, expression of cytokine 
receptors and cytotoxicity of T cells [25]. Lenalidomide 
is shown to directly activate CD28 and the subsequent 
signaling pathways, resulting in secretion of interleukin 2 
(IL-2) and interferon gamma (IFNγ) [26,27]. In addition, 
lenalidomide, in combination with dexamethasone, is 
approved for the treatment of multiple myeloma (MM) 
that is associated with its immunomodulatory effects 
[1,24,26-33].

Recently, cereblon (CRBN) is identified as a primary 
target that directly binds IMiDs and mediates the 
teratogenic and anti-tumor activities [34-36]. CRBN, 
together with CUL4, DDB1 and ROC1, forms the CRL4CRBN 

E3 ubiquitin ligase complex with CRBN as the substrate 
adaptor [34,37,38]. In the presence of lenalidomide, 
CRBN binds several proteins, such as Ikaros (Ikaros family 
zinc finger 1, IKZF1), Aiolos (Ikaros family zinc finger 3, 
IKZF3) and casein kinase 1 isoform alpha (CSNK1A1, also 
known as CK1α), leading to ubiquitination and subsequent 
degradation of these substrates by proteasome[39-42]. 
In order to better understand the mechanism of action of 
lenalidomide in MDS cells, we performed a genome-wide 
RNA interference screen and identified novel signaling 
pathways that modulated the sensitivity to lenalidomide 
in MDS/AML [43,44]. Here we summarized the major 
discoveries about the newly discovered signaling pathways 
mediated by lenalidomide in MDS/AML. Our studies 
provide insights into rational combinatorial therapy of 
lenalidomide in myeloid malignancies.

Lenalidomide regulates the GPR68/Ca2+/calpain 
pathway in MDS

In order to understand the mechanism of action of 
lenalidomide in MDS, we characterized the effects of 
lenalidomide on an MDS cell line, MDSL cells. The MDSL 
cells, initially derived from a low-risk MDS patients with 

del(5q) [45,46], contained a mixed populations of CD34+ 
and CD34- cells that behaved differentially in response 
to lenalidomide. In the presence of lenalidomide, the 
CD34- MDSL cells exhibited more Annexin V+ cells, while 
the CD34+ MDSL cells formed fewer colonies in semi-
solid methylcellulose. In liquid culture, both CD34+ and 
CD34- MDSL cells grew less efficiently in the presence of 
lenalidomide. Our findings suggested that lenalidomide 
exerted pleiotropic inhibitory effects on MDSL cells, 
including inhibition on growth, survival and clonogenicity. 
Intriguingly, depletion of CRBN reversed the inhibitory 
effects of lenalidomide on MDSL cells, indicating that 
lenalidomide acted through the CRL4CRBN E3 ubiquitin 
ligase complex.

In order to identify the genes that were critical for 
lenalidomide-mediated inhibitory effects on MDSL cells, 
we performed a genome-wide RNA interference screen in 
MDSL cells [43]. We found that depletion of a G protein-
coupled receptor, GPR68, reversed the inhibitory effects 
of lenalidomide on MDSL cells. In addition, GPR68 
mRNA and protein levels were upregulated in MDSL cells 
after treatment with lenalidomide. Among the identified 
targets of the CRL4CRBN E3 ubiquitin ligase complex (i.e. 
IKZF1, IKZF3 and CK1α), the promoter region of GPR68 
gene locus contained binding peaks for IKZF1, indicating 
that IKZF1 may regulate GPR68 expression. As expected, 
depletion of IKZF1 increased GPR68 expression, while 
overexpression of wild type IKZF1, but not degradation-
resistant IKZF1, reduced GPR68 expression in MDSL cells, 
indicating that IKZF1 acted as a transcription repressor, 
repressing GPR68 expression. These results suggested 
that in the presence of lenalidomide, IKZF1 was degraded 
by the CRL4CRBN E3 ubiquitin ligase/proteasome system, 
leading to derepression of GPR68 in MDSL cells.

In response to extracellular protons or overexpression, 
GPR68 undergoes conformational changes, leading to 
association with G proteins (Gq/11) and subsequent 
inositol phosphate formation and cytosolic calcium 
(Ca2+) accumulation [47]. Further studies revealed that 
upregulation of GPR68 in MDSL cells upon treatment with 
lenalidomide led to accumulation of cytosolic Ca2+ ions 
that was required for lenalidomide-mediated inhibitory 
effect on MDSL cells. Screening of pharmacological 
inhibitors that targeted Ca2+ -related signaling pathways 
revealed that inhibition of calpain reversed apoptosis in 
MDSL cells after treatment with lenalidomide, indicating 
that lenalidomide activated a Ca2+/calpain pro-apoptotic 
pathway in MDSL cells through derepressing GPR68. 
Notably, 3,5-disubstituted isoxazoles (Isx), a GPR68 
agonist [48], significantly increased cytosolic Ca2+ levels 
and apoptosis and reduced colony formation in MDSL 
cells in the presence of lenalidomide, indicating that both 
overexpression and activation of GPR68 could enhance 
lenalidomide-mediated inhibitory effects on MDSL cells.
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Lenalidomide regulates the RCAN1/CaN pathway 
in MDS 

Despite our observation in that GPR68 agonist Isx 
enhanced the inhibitory effects of lenalidomide on MDSL 
cells through inducing a Ca2+/calpain pro-apoptotic 
pathway, Isx has not been approved by the U.S. Food and 
Drug Administration (FDA) for any clinical applications. 
This prompted us to look for alternative candidates that 
could enhance the sensitivity to lenalidomide in MDS. 
From the genome-wide RNA interference         screen in MDSL 
cells, we found that depletion of regulator of calcineurin 1 
(RCAN1) also reversed the inhibitory effect of lenalidomide 
on MDSL cells. RCAN1 is the endogenous inhibitor of the 
serine/threonine phosphatase calcineurin (CaN) [49], a 
critical signaling molecule during T cell activation [50,51]. 
The pharmacological inhibitor of CaN, cyclosporine, is 
an FDA-approved drug that is used to prevent immune 
rejection after organ transplantation [52]. We therefore 
examined the effect of the RCAN1/CaN pathway on the 
sensitivity to lenalidomide in MDS.

Similar to GPR68, RCAN1 mRNA and protein levels 
were also upregulated in MDSL cells after treatment 
with lenalidomide. Intriguingly, depletion of IKZF1 also 
increased RCAN1 expression in MDSL cells, indicating 
that IKZF1 acted as a transcription repressor, repressing 
RCAN1 expression as well. These data suggested that 
through degrading IKZF1, lenalidomide derepressed 
the expression of both GPR68 and RCAN1 in MDSL 
cells. In contrast to GPR68, we failed to find any obvious 
binding peaks for IKZF1 in the promoter region of RCAN1 
gene locus, indicating that IKZF1 may regulate RCAN1 
expression through a different mechanism. Indeed, recent 
studies implicate IKZF1 functions as a tumor suppressor 
in T cell leukemia via global regulation of the enhancer/
super-enhancer landscape [53].

Consistent with the function of RCAN1 in T cells, 
depletion of RCAN1 in MDSL cells resulted in increased 
activity of CaN, indicating that RCAN1 also functioned 
as an inhibitor of CaN in MDSL cells. To understand the 
function of the RCAN1/CaN pathway in MDSL cells, we 
used cyclosporine to inhibit CaN activity. As expected, 
treatment of cyclosporine resulted in increased activity 
of CaN. Consistent with the function of CaN in T cells 
[50,51], treatment of cyclosporine resulted in increased 
Annexin V+ cells in MDSL cells, indicating that CaN was 
constitutively activated and provided a pro-survival signal 
in MDSL cells. Our results suggested that in addition to 
inducing the GPR68/Ca2+/calpain pro-apoptotic pathway, 
lenalidomide also inhibited the CaN pro-survival pathway 
via derepressing RCAN1 expression in MDSL cells. 
Lenalidomide crosslinked the GPR68/Ca2+/calpain and 
the RCAN1/CaN pathways through degrading IKZF1. 

Cyclosporine enhances the sensitivity to 
lenalidomide in MDS

Given that CaN provided a pro-survival signal in 
MDSL cells, we examined the effect of cyclosporine on 
the sensitivity to lenalidomide in MDS. We pretreated 
MDSL cells with control or lenalidomide, followed by co-
treatment with control or cyclosporine. Co-treatment with 
lenalidomide and cyclosporine induced more Annexin 
V+ cells than single treatment with lenalidomide or 
cyclosporine in MDSL cells. In addition, MDSL cells grew 
far fewer colonies in the presence of lenalidomide and 
cyclosporine than in the presence of lenalidomide only in 
methylcellulose. These results suggested that cyclosporine 
enhanced the sensitivity to lenalidomide in MDSL cells. 
In addition, we examined the effect of cyclosporine on 
the sensitivity to lenalidomide in primary bone marrow 
samples from MDS patients. We found more Annexin 
V+ cells in two MDS specimens after co-treatment with 
lenalidomide and cyclosporine than single treatment with 
lenalidomide or cyclosporine. Notably, one of the MDS 
patients was diagnosed with RAEBII, higher-risk MDS, 
indicating that cyclosporine enhanced the sensitivity to 
lenalidomide in both lower- and higher-risk MDS.

Cyclosporine enhances the sensitivity to 
lenalidomide in AML 

We next examined the effect of cyclosporine on the 
sensitivity to lenalidomide in AML. TF-1 cells are a 
del(5q) AML cell line that is sensitive to lenalidomide. 
Similar to MDSL, co-treatment of lenalidomide and 
cyclosporine significantly increased Annexin V+ cells in 
TF-1 cells compared to single treatment with lenalidomide 
or cyclosporine. In addition, we examined the effect of 
cyclosporine on the sensitivity to lenalidomide in AML 
patient-derived xenograft (PDX) models. All three PDX 
models were derived from pediatric AML after relapse 
who failed to respond to chemotherapy [54]. Among the 
three PDX models, one was sensitive to lenalidomide 
as evidenced by increased Annexin V+ after treatment 
with lenalidomide. Co-treatment with lenalidomide 
and cyclosporine induced more Annexin V+ cells in the 
lenalidomide-sensitive PDX model than single treatment 
with lenalidomide or cyclosporine. Surprisingly, co-
treatment with lenalidomide and cyclosporine induced 
apoptosis in the two PDX models that were resistant 
to lenalidomide. Intriguingly, the lenalidomide-
sensitive PDX model contained wild type p53, while the 
lenalidomide-resistant PDX models contained mutant p53, 
which was consistent with clinical observations in that p53 
mutation was associated with resistance to lenalidomide 
[2,8]. In addition, the three PDX models contained MLL 
arrangements and complex karyotypes, indicating that 
cyclosporine enhanced the sensitivity to lenalidomide in 
AML irrespective of the cytogenetic aberrations.
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Pretreatment of lenalidomide reverses the 
immunosuppressive effect of cyclosporine 

Upon recognizing the antigen/MHC complex, TCR, 
coreceptors and co-stimulation activate a series of 
signaling pathways, among which CaN and the subsequent 
nuclear factor of activated T cells (NFAT) play a critical 
role during T cell activation. The CaN/NFAT pathway 
promotes the production of IL-2, resulting in proliferation 
and survival of T cells [55,56]. After organ transplantation, 
T cells play a major role mediating immune rejection. In 
clinics, high-dose cyclosporine is used to prevent immune 
rejection through inhibiting the CaN/NFAT pathway and 
T cell response [57,58]. In contrast, low-dose cyclosporine 
is used in miscellaneous pathological disorders [59-
61]. Abnormal immune function is also implicated in 
the pathogenesis of MDS [62-64]. In lower-risk MDS, 
autologous T cells mediate apoptosis in both MDS cells 
and normal hematopoietic cells [65]. In higher-risk MDS, 
T cells fail to recognize antigen/MHC complex on APC 
due to inhibitory signals, such as programmed death-1 
(PD-1) and its ligand programed death ligand 1 (PD-L1), 
leading to defective tumor surveillance [66]. Therefore, 
immunosuppressive therapy, such as cyclosporine, is 
used for patients with lower-risk MDS, while immune 
checkpoint inhibitors are used for patients with higher-

risk MDS [64,67-69]. We examined the combined effects 
of lenalidomide and cyclosporine on T cell response. T cells 
were harvested from spleens of C57Bl6 mice and activated 
in the presence of anti-CD3 and anti-CD28 antibodies. 
T cell activation was inhibited by co-treatment with 
lenalidomide and cyclosporine but not single treatment 
with lenalidomide, indicating that cyclosporine inhibited 
T cell activation. Intriguingly, when we pretreated T cells 
with lenalidomide, co-treatment with lenalidomide and 
cyclosporine didn’t inhibit T cell activation, indicating that 
pretreatment of lenalidomide reversed the inhibitory effect 
of cyclosporine on T cell activation. Lenalidomide directly 
binds human CRBN but not mouse Crbn due to a mutation 
within the binding domain [41]. Our results indicated 
that lenalidomide reversed the immunosuppressive effect 
of cyclosporine through a CRBN-independent manner. 
Lenalidomide-mediated direct activation of CD28 may 
explain the reversion of cyclosporine’s immunosuppressive 
effect on T cells, which needs further clarification.

Conclusion

Our recent studies identify that lenalidomide mediates 
degradation of IKZF1, leading to derepression of GPR68 
and RCAN1 (Figure 1). Upregulation of GPR68 activates 
a Ca2+/calpain pro-apoptotic pathway in MDS cells. In 
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Figure 1: Overview of the mechanism of action of lenalidomide in MDS/AML. Through the CRL4CRBN 

E3 ligase complex, lenalidomide mediates degradation of IKZF1, leading to derepression of GPR68 and RCAN1. 
Derepression or activation (i.e. Isx) of GPR68 induces a Ca2+/calpain (CAPN) pro-apoptotic pathway. Derepression of 
RCAN1 inhibited the CaN pro-survival pathway. Cyclosporine enhances the sensitivity to lenalidomide in MDS/AML 
through inhibiting CaN activity.
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addition, GPR68 agonist Isx also activates the Ca2+/calpain 
pro-apoptotic pathway, thus enhancing the cytotoxicity 
of lenalidomide in MDS. However, the fact that Isx is 
not an FDA-approved drug limits its clinical application. 
Upregulation of RCAN1 inhibits the CaN pro-survival 
pathway in MDS cells. The pharmacological inhibitor of 
CaN, cyclosporine, induces apoptosis in MDS/AML cells, 
thus enhancing the cytotoxicity of lenalidomide in MDS/
AML. Surprisingly, pretreatment of lenalidomide reverses 
the immunosuppressive effect of cyclosporine on T cells. 
Our studies provide the rational therapeutic combination 
of lenalidomide and cyclosporine in myeloid malignancies.
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