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Developing defense mechanisms by the host is 
fundamental to ensure its survival against various 
microbial pathogens. At the heart of the host defense 
against microbes is its ability to initiate an immune 
response to detect and eliminate potential microbial 
threats. However, in many cases the aberrant immune 
response is the cause of the host’s clinical symptoms of 
infections rather than the microbe itself [1]. Therefore, 
understanding the mechanisms governing the initiation 
and the regulation of the host’s immune response 
against various microbial encounters is critical for our 
understanding of the host-microbe interaction. Over 
three decades ago, Charles Janeway Jr. proposed a model 
of pathogen detection describing two characteristics of 
innate immune receptors: first, the ability to distinguish 
between self and non-self molecules, and second is the 

ability to promote adaptive immune response to the non-
self microbial products [2]. Toll-like receptors (TLRs) 
were the first among many other innate immune receptors 
to fulfill Janeway’s prediction. TLRs were discovered 
as the human homolog of Drosophila Toll protein and 
were subsequently identified for their ability to recognize 
conserved pathogens-associated molecular patterns 
(PAMPs) followed by driving an innate immune response 
and adaptive immunity [3]. TLR4 was the first member 
to be characterized, followed by the identification of 
bacterial lipopolysaccharide (LPS) as the microbial ligand 
activating the TLR4 [3-6]. TLRs are type I transmembrane 
proteins, which share conserved functional domains. 
The N-terminal extracellular domain consisting of 
leucine-rich repeats in a horseshoe-like structure for 
ligand recognition, a single transmembrane domain 
and an intracellular Toll-interleukin (IL)-1 receptor 
(TIR) domain for signaling transduction [7-9]. TLRs 
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Lipopolysaccharide (LPS)–induced toll-like receptor 4 (TLR4) endocytosis has emerged as a key step for the production of 
interferon (IFN)-β, which activates the transcription of antiviral response genes through Janus kinase (JAK)/pTyr701 signal 
transducer and activator 1 (STAT1) signaling. TLR4 endocytosis also promotes proinflammatory cytokines production, at least 
in part through mediating a late-phase of nuclear factor (NF)-κB activation. However, NF-κB activation alone cannot explain 
the full spectrum of how TLR4 endosomal signaling conduits the production of proinflammatory cytokines. Our study identified 
STAT1 as a proinflammatory effector downstream of TLR4 endocytosis independent of IFN-β signaling or NF-κB activity. In 
human macrophages, TLR4 endocytosis activates noncanonical phosphorylation of STAT1 at Thr749 (pThr749), which subsequently 
promotes the proinflammatory response rather than the IFN response. pThr749 STAT1 prolongs the half-life of interleukin (IL)-6 
mRNA through activating the transcription of AT-rich interactive domain-containing protein 5A (ARID5A), which stabilizes IL-6 
mRNA. Furthermore, pThr749 STAT1 promotes a late-phase of the transcription of IL-12. We demonstrated that pThr749 confers 
STAT1 with distinct gene-regulatory prosperities and facilitates STAT1 binding to a noncanonical DNA motif (5’...TTTGANNC...3’) 
at the promoter regions of ARID5A and IL-12. Our results indicate that different phosphorylation of STAT1 confers distinct DNA 
binding and gene regulation downstream of TLR4 endocytosis where pTyr701 promotes the IFN response while pThr749 promotes 
the proinflammatory response. By unveiling an alternative activation of STAT1, our study adds another piece to the puzzle of how 
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for proinflammatory diseases.
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can be classified according to their cellular localization 
into cell surface or intracellular TLRs. Cell surface TLRs 
are located at the plasma membrane and recognize 
microbial cell surface molecules such as TLR1, 2 and 6 
(bacterial lipoprotein), TLR4 (LPS) and TLR5 (flagellin) 
[10-15]. On the other hand, intracellular TLRs localize 
in endosomes and detect nucleic acids such as TLR3 
(double-stranded RNA), TLR 7 and 8 (single-stranded 
RNA) and TLR9 (unmethylated CpG containing single-
stranded DNA) [16-22]. This compartmentalization of 
TLRs is fundamental for the specificity of their ligand 
recognition and the subsequent engagement of specific 
adaptor molecules that initiate signaling cascades and 
culminate in an appropriate immune response [23,24].

This paradigm is clear in the case of TLR4, which 
exploits different adaptors to induce distinct signaling 
pathways, thus expanding the repertoire of transcribed 
genes and potentiating the production of a wide array of 
immune mediators. Among these immune mediators is 
IL-6, which is a pleotropic cytokine with diverse effects 
on immune and non-immune cells, and affects the host 
homeostasis [25-27]. Thus, coordinated regulatory 
mechanisms exist to regulate TLR4 driven production 
of immune mediators, especially IL-6. At the plasma 
membrane, TLR4 recognizes LPS through a multi-
receptor complex of LPS-binding protein (LBP), CD14 
and MD2, which triggers TLR4 dimerization [28-33]. 
Dimerized TLR4 at the plasma membrane interact with 
a sorting adaptor, TIR Domain Containing Adaptor 
Protein (TIRAP), which recruits the signaling adaptor 
protein Myeloid differentiation primary response 
88 (Myd88) [34-38]. Myd88 conduits TLR4 surface 
signaling as a part of a large oligomeric supra-molecular 
organizing center (SMOC) called Myddosome consisting 
of oligomers of TLR4, TIRAP, Myd88 and IL-1 receptor-
associated kinases (IRAKs) [39-43]. The Myddosome 
through IκB kinases (IKK) and mitogen-activated protein 
kinases (MAPK) signaling activates nuclear factor-kappa 
B (NF-κB) and activator protein 1 (AP-1), respectively, 
culminating in the transcription of a multitude of 
proinflammatory cytokines such as tumor necrosis factor 
(TNF), IL-12 and IL-6 [44-47]. Although activating the 
transcription of proinflammatory cytokines is a key step 
for initiating the immune response, non-transcriptional 
regulation is critical for tailoring the immune response 
and prevent aberrant production of these cytokines. 
A clear example of the Myddosome-dependent non-
transcriptional regulation is the regulation LPS 
stimulated IL-6 and IL-12, conceivably because of their 
important role in driving the proinflammatory response 
and shaping the adaptive immunity [25,48]. At the 
resting state, Regnase-1 prevents aberrant production of 
IL-6 and IL-12, but not TNF, by targeting their mRNA for 
degradation [49]. Upon LPS stimulation the IKK complex 

phosphorylates the DSGXXS motif of Regnase-1 resulting 
in its degradation and subsequently promotes IL-6 and 
IL-12 mRNA stability and production [50]. 

The association of activated TLR4 with CD14 promotes its 
endocytosis, which is clathrin- and dynamin-dependent 
[51,52]. From endosomes, TLR4 dimers interacts with 
another sorting adaptor called TRIF-related adaptor 
molecule (TRAM), which seeds the formation of another 
SMOC, the Triffsome that initiate TIR-domain-containing 
adapter-inducing interferon-β (TRIF)-dependent 
signaling. TRIF mediates the activation of IKK-related 
kinase ε (IKKε) and TANK-binding kinase (TBK1), which 
phosphorylate and activates the transcriptional regulator 
interferon regulatory factor 3 (IRF3) and the subsequent 
expression of genes encoding type I interferons (IFNs) 
[53]. Binding of type I IFNs to their receptor (IFNAR) 
on the same cell (autocrine) or adjacent cells (paracrine) 
activates Janus kinase 1 (JAK1) and tyrosine kinase 2 
(Tyk2), which in turn promotes Tyr701 phosphorylation 
of signal transducer and activator 1 (STAT1), a key step 
for its transcriptional activity [54]. This phosphorylation 
event results in the binding of STAT1 with STAT2 and 
IRF9 to form the heterotrimer called IFN-stimulated 
gene factor 3 (ISGF3) complex, which binds to IFN-
stimulated response element (ISRE) sites and initiates 
the transcription of multiple IFN-stimulated genes 
important for antiviral response [55]. Moreover, TRIF–
mediated type I IFNs production promotes Caspase-11–
dependent NLRP3 inflammasome activation followed 
by cell death and the release of IL-1β and IL-18 [56]. 
Although type I IFNs are fundamental for initiating the 
antiviral immune response, their contribution to host 
defense against bacterial pathogens is elusive, with 
increasing evidence showing that they are dispensable 
for the production of proinflammatory cytokines [57-
60]. Although TRIF signaling promotes proinflammatory 
cytokine production through sustaining a late-phase 
activation of NF-κB [61,62], several observations have 
challenged this idea and showed that neither TRIF 
deficiency nor interfering with TLR4 endocytosis affects 
the kinetics of NF-κB activation [63-65]. Thus, it remains 
unclear how TLR4 signaling from endosomes promotes 
the production of proinflammatory cytokines.

In contrast to IFN-pTyr701 STAT1, STAT1 deficiency 
results in diminished production of IL-6 and enhanced 
survival in response to bacterial infections [66,67],  
indicating that the role of STAT1 extends beyond that of 
its Tyr701 phosphorylation in the context of shaping the 
proinflammatory response. Our group has identified AT-
rich interactive domain-containing protein 5a (Arid5a) as 
a post-transcriptional stabilizer of IL-6 mRNA through 
counteracting the Regnase-1 effect [68]. Notably, 
Arid5a/Regnas-1 regulation extends beyond IL-6 to 
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other immune modulatory molecules such as OX40 
[69]. Deficiency of Arid5a phenocopied that of TRIF and 
STAT1 in enhancing mice survival in murine endotoxic 
shock model [70], denoting a potential signaling pathway 
connecting these molecules. In this regard, we found 
that TLR4 endocytosis promotes the formation of a 
noncanonical TBK1/IKKβ kinase complex, which in 
turn mediates a noncanonical STAT1 phosphorylation 
at Thr749. Intriguingly, pThr749 STAT1 augments the 
TRIF-dependent macrophage proinflammatory cytokine 
production through distinct mechanisms independently of 
its pTyr701 or the NF-kB activity. Of note, phosphorylation 
of Thr749 did not affect STAT1 nuclear translocation. 
Instead, it facilitated STAT1 binding to a noncanonical 
DNA motif (5’-TTTGANNC-3’) at the promoter 
regions of ARID5A and IL-12 resulting in augmented 
production of IL-12 and IL-6 through augmenting their 
transcription and mRNA stabilization, respectively 
[71]. Collectively, our study highlights the importance 
of the spatiotemporal regulation of TLR4 signaling and 
its impact on mediating differential phosphorylation of 
STAT1 resulting in altering its DNA binding specificity 
and transcriptional outcome. Thus, our study provides a 
potential mechanistic explanation of how TLR4 signaling 
from endosomes promotes proinflammatory cytokines 
production independent of NF-κB activation. It requires 
future research for better understanding of the TLR4 
proinflammatory endosomal signaling and to answer 
whether the balance between pTyr701 and pThr749 STAT1 
dictates the fate of the macrophage immune response 
towards antiviral or proinflammatory, respectively; what 
is the in vivo biological effects of the pThr749 STAT1 on 
the host’s immune response; and, what are the molecular 
mechanisms regulating this phosphorylation.
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