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AD is a neurodegenerative disease characterized by 
progressive cognitive impairment, behavioral changes, 
memory loss and executive dysfunction, all of which 
present serious threats to the health of older people [1]. 
It has been proposed that the pathology of AD spreads 
between functionally and anatomically connected brain 
regions through prion-like mechanisms [2-6], which 
promote the progression of neurological diseases. Methods 
for early diagnosis and treatment of AD are urgently 
needed in order to delay the progress of the disease and 
preserve the quality of life of patients. 

After the fusion of multi-vesicle bodies (MVBs) and 
the plasma membrane, exosomes are released into the 
extracellular space [7]. When exosomes are absorbed 
by receptor cells, they transfer their contents [8], which 
can promote the transmission of pathological proteins 
between nerve cells and encourage the development of 
neurodegenerative diseases. Exocrine bodies are abundant 
in blood, saliva, urine, semen, amniotic fluid, ascites, 
cerebrospinal fluid (CSF) and breast milk [9]. There is 
growing evidence that exosomes freely cross the blood-
brain barrier (BBB) [10-12], and it follows that exosomes 
in CSF can cross the blood-brain barrier to reach the blood  
and then pass through the kidneys into the urine. Given 
consistent control of other factors , such as age, region, 
education level, and no other related diseases, changes 
in the contents of plasma and urine exosomes can reflect 
changes in the brain to a certain extent.

Exosomes vary in size and shape depending on their 
origin and function [13], and they can be distinguished 
in clinical studies by transmission electron microscopy 
(TEM). Negative staining is considered to be the best 
method for TEM imaging of exocrine bodies [14], because 
it can detect most exosomes. Gradual technical advances in 
this method have made it possible to observe the detailed 
structure of exosomes [15].

Nanoparticle tracking analysis (NTA) is a method that 
was developed in recent years allowing quantitative 
measurement of the size of particles with diameters ranging 
from 30 nm to 1 μm. It can also be used to measure the 
diameter and number of exosomes. The NTA technology 
depends on the NanoSight instrument, which is equipped 
with a highly sensitive camera and a vertical microscope 
with a laser light source. The particle size distribution and 
particle number in the liquid suspension are obtained by 
using the characteristics of light scattering and Brownian 
motion. The laser beam passes through the sample 
chamber and follows the path of scattered light through 
the particles in the suspension, so that the particles can 
be observed through a 20x magnification microscope 
with a camera. Einstein’s equation is used to calculate the 
hydrodynamic diameter of the particles.

In the manuscript titled “A Pilot Study of Urinary Exosomes 
in Alzheimer’s Disease”, enzyme-linked immunosorbent 
assay was used to detect the levels of Aβ1–42 and P-S396-
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tau (normalized by CD63) in urinary exosomes derived 
from AD patients and matched healthy subjects. TEM 
and NTA were used to characterize the exosomes. Urinary 
exosomes from AD patients were found to contain higher 
levels of Aβ1–42 and P-S396-tau compared to those of 
matched healthy controls, and exosomes taken from AD 
patients were also more numerous. The difference in levels 
of Aβ1–42 and P-S396-tau and the disparate quantity 
of urinary exosomes between AD patients and healthy 
controls may provide a basis for early diagnosis of AD.

However, the sample size in this study is relatively small, 
and the sample may not be representative. Studies of 
pathological protein in urinary exosomes of patients with 
AD are relatively few, and the difficulty of operation and 
experimental uncertainty are higher than in detection of 
plasma exosomes. More samples are needed to verify the 
conclusion. In addition, the vesicles tested in the study 
included exosomes as well as other extracellular vesicles. 
If further purification is done using technology such as 
neuron-derived markers (NCAM or L1CAM antibodies), 
which only exist on the surface of neuron-derived 
exosomes, but not on other vesicles, the results will be 
more reliable [16].

Intracellular Aβ accumulation is the result of amyloid 
precursor protein (APP-transport imbalance where in 
extra proteins that exceed the degradation capacity of glial 
cells and lysosomes are released into the extracellular space 
among brain cells by exosomes [17-19]. Phosphorylated 
tau protein accumulation leads to the formation of double-
stranded microfilaments that in turn accumulate to form 
neurofibrillary tangles and then destroy the normal function 
of neurons, eventually leading to the onset of AD [20]. In 
AD, the level of tau protein is 300% higher than in normal 
older adults, and hyperphosphorylated tau protein plays a 
major role in the progression of AD [21]. Upregulation and 
then failure of neuronal autophagic-lysosomal systems  
in patients with AD may cause lysosomal proteins to be 
added to exosome shipments, inappropriately facilitating 
their removal from neurons [22,23], so the level of 
lysosomal proteins in exosomes in patients with AD may 
be aberrant. The direct neuropathological consequences 
of insulin resistance include increased formation and 
accumulation of Aβ1-42 oligomer, increased level of 
tau phosphorylation, and higher levels of insulin in the 
brain, which can competitively inhibit the degradation of 
Aβ1-42 protease [24-26]. It can be concluded then that 
insulin resistance plays a key role in the disease process 
of AD. A decrease in the level of synaptic protein SNAP-
25 is considered to be a biomarker indicating the degree 
of synaptic degeneration [27,28]. Loss of synaptic density 
and connectivity, accompanied by decreased expression of 
synaptic protein SNAP-25, has been observed in multiple 
brain regions of patients with AD.

Regarding treatment, only highly fat soluble substances 
with molecular weights below 400Da can reach the brain 
through blood circulation due to the blood-brain barrier. 
However, over 98% of drug molecules fail to meet this 
standard, so the effect of most drugs is limited [29]. 
In recent years, in order to improve intracranial drug 
delivery, researchers have used a variety of methods, such 
as surgery, infusion of hypertonic fluid, and drug chemical 
modification, to increase the permeability of the blood-
brain barrier and consequently increase the total amount 
of drugs reaching the brain. However, this method also 
inevitably increases the risk of intracranial infection and 
may have more adverse effects on patients. Because its lipid 
bimolecular structure can effectively load hydrophobic and 
hydrophilic drugs, and can freely cross the blood-brain 
barrier [30], exosomes are also considered ideal carriers for 
drug delivery [31]. Exosomes’ lipid bimolecular structures 
can effectively load both hydrophobic and hydrophilic 
drugs [32]. In the process of ligand receptor-mediated 
drug delivery, exosomes facilitate targeting [33], laying a 
foundation for highly specific therapies for nervous system 
diseases such as AD.

AD is a progressive neurodegenerative disease. The 
vast majority of AD patients do not show any symptoms 
even in the few years immediately preceding the onset of 
dementia, although memory impairment may sometimes 
reach the threshold for diagnosis [34]. At this time, the 
effect of drug treatment is very limited, seriously affecting 
the quality of life of patients as well as their families. 
Therefore, the development of methods allowing early 
diagnosis before the clinical stage is imperative, because 
preventive treatment may be more effective. The study of 
exosomes has opened up a new path for the diagnosis and 
treatment of AD. It is believed that early diagnosis and 
treatment of AD will be finally possible with further study.
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