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The pivotal work by Zijian Xie provided ground-
breaking insights describing that the Na/K-ATPase 
(NKA), in addition to being an essential ion pump, also 
functions as a signal transducer with the capability to 
interact with multiple signaling partners [1-3]. As an 
extension of this, our work along with a large body of 
work from the laboratories of Blaustein and Hamlyn as 
well as Bagrov and Fedorova, demonstrated that there 
were two major classes of endogenous NKA ligands or 
cardiotonic steroids (CTS), those from the cardenolide 
class such as ouabain and those which were bufadienolide 
such as marinobufagenin [4]. Although there has been 
some debate as to whether the cardenilide CTS serve 
primarily as neurohormones and the bufadienalides 
serve as peripheral effectors [5], there is little debate that 
the circulating concentrations of both chemical classes 
are elevated in volume-expanded states such as salt-
sensitive hypertensive renal disease, preeclampsia, and 
uremic cardiomyopathy [6-13]. In addition to having 
effects on vascular reactivity and renal sodium handling 
[5,6,14-16], CTS signaling through the NKA/Src kinase 
pathway appears to induce both cardiac and renal fibrosis 
[6-13]. The recent report by Grigorova et al. represents 
an essential contribution to the field of NKA pro-fibrotic 
signaling by demonstrating that in a normotensive 
animal model, high salt diet-induced aortic stiffness and 
fibrosis is associated with significantly elevated levels of 
the CTS marinobufagenin (MBG) in a pathway involving 
TGF-β and SMAD signaling [17]. Importantly, Grigorova 
et al. further demonstrate that reduced sodium intake 
significantly reduced MBG levels and the accompanying 
aortic fibrosis indicating that reduced dietary sodium 
intake improves vascular stiffness by reducing MBG levels 
[17]. These results have important implications for the 

development and progression of cardiovascular disease 
as reduced sodium intake improves aortic stiffness and 
fibrosis by diminishing pro-fibrotic CTS/NKA signaling.

Originally discovered by Jens Skou as an ion pump, the 
NKA (a P-type ATPase) has also been well described to 
have important cellular signaling capabilities [18]. The 
NKA provides the essential function of Na+ reabsorption 
in the kidneys and is intimately involved in the regulation 
of extracellular volume and blood pressure [19-21]. The 
main structural components of the NKA are composed of 
a catalytic α subunit, a β subunit, and in some tissues, 
a γ subunit [20]. The ATP and ligand binding sites are 
located within the α subunit, which is also the site of ATP 
hydrolysis responsible for maintaining an ionic gradient 
by transporting Na+ and K+ across cell membranes 
[20]. The α subunit consists of four isoforms (α1-α4), of 
which, in mammalian species, the α1 subunit is capable 
of forming a signaling complex with the tyrosine kinase, 
Src resulting in the activation of several downstream 
signaling cascades [16,22]. Apparently, when CTS bind 
to the NKA, the E2 state becomes preferred. As the 
α1 subunit binds the Src kinase domain only in the E1 
state [15], these CTS effectively activate Src kinase [23]. 
Activated Src then transactivates the epidermal growth 
factor receptor (EGFR) which results in the activation 
of phospholipase C (PLC), phosphoinositide 3-kinase 
(PI3K), mitogen-activated protein kinases (MAPKs), 
protein kinase C (PKC), and the generation of reactive 
oxygen species (ROS) and ERK (extracellular-signal-
regulated kinase) [2,5]. 

Importantly, CTS binding to the NKA is also heavily 
involved in natriuresis [24-26]. Volume expanded states 
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such as chronic kidney disease and high dietary sodium 
result in elevated circulating levels of CTS which decrease 
proximal tubular sodium reabsorption and effect 
natriuresis [16]. However, there appears to be a “trade 
off” for this natriuresis. 

CTS signaling through the NKA/Src also facilitates 
the development of fibrosis. Elevated circulating levels 
of endogenous CTS have been reported in patients 
with chronic kidney disease [27,28]. In the 5/6 partial 
nephrectomy model of uremic cardiomyopathy, we 
reported significantly elevated circulating MBG levels, 
cardiac hypertrophy, cardiac fibrosis, and ROS generation 
with activation of NKA/Src/EGFR/ERK signaling in 
left ventricular tissue [9]. Similar results were reported 
following infusion of MBG at a concentration similar to 
levels reported in the partial nephrectomy model [9,10]. 
Importantly, both active and passive immunization 
against MBG has been show to attenuate the pro-fibrotic 
effects of CTS/NKA signaling [9,10,29]. In cardiac 
fibroblasts, treatment with physiologically relevant 
concentrations of MBG induced collagen production [10]. 
This MBG-induced increase in collagen was attenuated 
following inhibition of Src, EGFR translocation, and 
treatment with the antioxidant N-acetyl cysteine 
providing further evidence that MBG induces cardiac 
fibrosis acting through the NKA/Src/EGFR/ROS 
signaling complex [10]. Further experiments in cardiac 
fibroblasts were conducted to determine the extent of 
TGF-β and Smad signaling in MBG-induced collagen 
production. Here, we demonstrated that although no 
increase in TGF-β or Smad signaling proteins were 
observed, treatment with a TGF-β antagonist prevented 
MBG-induced collagen production [10]. We have 
also shown that the transcription factor and negative 
regulator of collagen production, Friend leukemia 
integration-1 (Fli-1) is involved in MBG induced fibrosis. 
The δ-isoform of PKC has been shown to phosphorylate 
Fli-1 leading to collagen synthesis [30]. Fli-1 knockdown 
mice subjected to 5/6 partial nephrectomy demonstrated 
significantly elevated left ventricular fibrosis [31]. In 
cardiac, renal, and dermal fibroblasts, MBG was shown to 
reduce nuclear Fli-1 expression and increase procollagen 
expression [31]. Furthermore, MBG treatment resulted 
in PKCδ translocation into the nucleus in a PLC 
dependent manor [31]. Taken together, these results 
indicate that MBG induced signaling through the NKA/
Src/EGFR cascade activates PKCδ translocation to the 
nuclease in a process involving PLC. Once in the nucleus, 
PKCδ phosphorylates Fli-1 preventing Fli-1 inhibition 
of the collagen promoter resulting in elevated collagen 
expression [31]. In addition, we have demonstrated that 
activation of the serine/threonine mammalian target of 
rapamycin (mTOR) system is involved in MBG-induced 

cardiac fibrosis [12]. Here, we show that treatment with 
the mTOR inhibitor, rapamycin significantly reduced 
circulating MBG levels and attenuated cardiac fibrosis in 
the 5/6 partial nephrectomy model [12]. 

As we and others have extensively reported and in direct 
relevance to the current work by Grigorova et al. [17], 
volume expanded states induce elevated circulating levels 
of CTS which serve an essential function in natriuresis 
to maintain sodium balance. However, when CTS levels 
are chronically elevated natriuresis is accompanied by 
adverse CTS signaling through the NKA/Src complex 
leading to cardiac fibrosis. Thus, CTS induced natriuresis 
is intimately linked to the trade-off of fibrosis.
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