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Introduction

Metallic glasses are amorphous solids with metallic atomic 
bonds. Different from traditional crystalline metals, they 
have no long-range atomic order. Only short-range order on 
the scale of 0.5–1 nm can be detected [1-4]. Because of the 
lack of a lattice dislocation slip system, as in crystalline alloys, 
metallic glasses exhibit some outstanding properties, such 
as high elastic strain, high hardness and high strength [5-7]. 
The yield strengths of Zr-based bulk metallic glasses (BMGs) 
are approximately 2 GPa in compression. Unfortunately, 
this special structure also creates problems; that is, plastic 
deformation in BMGs is always concentrated in localized 
regions, namely, shear bands, resulting in catastrophic failure 
[8]. This brittleness restricts their industrial applications. 
Zr64Ni10Al7Cu19 is a BMG system [9,10] with good glass forming 
ability and high strength but no plastic strain under tensile 
testing.

Considerable studies have been performed to find a way to 
improve the ductility of BMGs. Limiting the propagation of 
shear bands is a key issue [9-12]. Recently, nanoglasses, which 
are amorphous solids consisting of nanometer-sized glassy 
regions connected by glass/glass interfaces, were reported 
[12-15]. Such nanoglasses could have new features; e.g., (1) 
denser glassy particles could hinder the propagation of shear 
bands that act as second phase strengthening; and (2) an 

enhanced free volume due to the misfit between the atoms 
at the boundaries between glassy particles could lead to the 
formation of more shear bands.

High-pressure torsion (HPT) is a severe plastic deformation 
technique for refining grains in polycrystalline materials [15]. 
Recent studies have shown that in BMGs, free volume can 
be enhanced by HPT, which is known as rejuvenation [16]. 
As a result, the velocity of shear band sliding is reduced [17], 
and the ductility can be improved [1]. These effects are also 
accompanied by the development of residual stress because 
of inhomogeneous plastic flow (deformation with a strain 
gradient) [18]. Therefore, it is of interest to perform a systematic 
study of severe plastic deformation (HPT) on nanoglass.

Synthesis and Structure of Nanoglass

As introduced above, compared with BMGs, nanoglasses 
could have improved properties. Several methods have been 
developed for nanoglass synthesis. Inert gas condensation 
was first investigated [26,27]. Nanoscale glassy clusters 
are evaporated from the target material into an inert gas 
atmosphere (helium) and then consolidated under vacuum. 
Magnetron sputtering is another method for nanoglass 
preparation. A negative potential is applied to a target, acting 
as a cathode. Atoms in the sputtering target are ejected by 
the collision of Ar+ ions and are deposited on a substrate, 
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forming a nanoglass thin film [28]. Phase separation is a newly 
developed method by adding elements (such as Co) with 
a positive enthalpy of mixing [1]. With a particular chemical 
composition, nanoscale phase separation can take place 
in glassy structures by water-cooled copper-mold casting. 
Compared with inert gas condensation and magnetron 
sputtering, nanoglasses synthesized by the phase separation 
method have a large size (on the millimeter scale), making 
HPT treatment possible.

In this work, the Zr64Ni10Al7Cu19 system was selected because 
of its good glass forming ability [19]. Cobalt was then added 
to partially replace zirconium. The positive enthalpy of mixing 
between cobalt and copper (6 kJ/mol) constitutes the driving 
force for nanoscale phase separation. Transmission electron 
microscopy (TEM) analysis of the as-cast Zr64Ni10Al7Cu19 and 
Zr55.7Ni10Al7Cu19Co8.3 samples is shown in Figure 1. Electron 

diffraction halos confirm the amorphous structure of both 
samples. Nanometer-scale glassy clusters are clearly detected 
in the as-cast Zr55.7Ni10Al7Cu19Co8.3 sample. HPT treatments 
have been applied on this sample.

High-Pressure Torsion on Nanoglass

The as-cast Zr55.7Ni10Al7Cu19Co8.3 nanoglass samples show 
good HPT deformation capabilities. No cracks were detected 
in the severely plastic deformed HPT-treated samples. The 
shear strain γ can be calculated through γ =  ����

�
,  

  

 where h is 
the initial thickness of the sample (0.4 mm), R is the distance 
from the sample center, and N is the number of rotations (2, 
5, 10, 20). X-ray diffraction (XRD) patterns of all HPT-treated 
samples are shown in Figure 2. In addition to the broad 
diffraction peak, no sharp peaks from crystalline phases are 
observed for all samples. However, the TEM images in Figure 

 

 
Figure 1: TEM images of (a) Zr64Ni10Al7Cu19 and (b) Zr55.7Ni10Al7Cu19Co8.3 metallic glass samples.

 

  
  

Figure 2: XRD patterns of the as-cast and HPT-treated (rotation number N=2, 5, 10, 20) Zr55.7Ni10Al7Cu19Co8.3 samples. Reprinted from [2], with 
the license “CC-BY 4.0” (https://creativecommons.org/licenses/by/4.0/).
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3 reveal that two rotations of HPT changed the structure of 
the Zr55.7Ni10Al7Cu19Co8.3 sample. Nanometer-scale crystalline 
particles appear as bright points in the dark-field image in 
Figure 3c. The content of nanocrystalline particles is small, 
most likely less than 1%, so that they cannot be detected by 
XRD. Shear bands induced during HPT treatment can also be 
observed in the TEM images (dark lines in the dark-field image, 
marked by arrows, Figure 3c). 

Differential scanning calorimentry (DSC) measurements 
were also performed for as-cast and HPT-treated nanoglass 
samples. Zr55.7Ni10Al7Cu19Co8.3 nanoglass exhibits a two-step 
crystallization at 701 K and 794 K, which most likely results 
from the phase separation in the samples. HPT treatments 
do not affect the crystallization processes with no detectable 
change in Tg, Tx or crystallization enthalpy, as shown in Figure 
4a. However, interesting changes take place in the relaxation 
processes prior to Tg (Figure 4b). After two rotations of HPT, 
more energy release during relaxation is observed, indicating 
a release of enhanced free volume. By further increasing the 
rotation number (N=5, 10, 20), the free volume decreases 
further. This decrease could be due to heating and/or 
mechanical annealing effects during plastic deformation [20].

Figure 5 (a) shows the radial distributions of the 
nanoindentation hardness values of the as-cast state and HPT-
treated (N=2, 5, 10, 20) Zr55.7Ni10Al7Cu19Co8.3 samples. In the 
central region (0-500 µm from the center), there is a relatively 
small increase of the hardness after HPT treatments of about 
3%. In the outer region (500-3500 µm from the center), the 
hardness of the treated sample increases from 5.9 ± 0.1 to 6.3 
± 0.1 GPa. As reported in [18], the residual compressive stress 
is aligned parallel to the radial direction introduced by the 
disk material flow during HPT deformation [21]. The Young’s 
modulus radial distributions of the as-cast and HPT-treated 
Zr55.7Ni10Al7Cu19Co8.3 samples are shown in Figure 5b. After HPT 
treatment, the Young’s modulus of the nanoglass increases 
from 84 ± 2 to 92 ± 2 GPa, i.e. about 10% [22].

Unlike compression, metallic glasses have zero ductility under 
tensile loading. A load-displacement curve and scanning 
electron microscopy (SEM) images can be obtained at the 
same time during the in situ tensile testing performed within 
the SEM chamber test. The tensile stress–strain curves of the 
as-cast and HPT-treated Zr55.7Ni10Al7Cu19Co8.3 nanoglasses are 
shown in Figure 6. Similar to the results reported in other 
publications [23-25], the as-cast metallic glasses show almost 

 

 

  
Figure 3: TEM images of Zr55.7Ni10Al7Cu19Co8.3 (a) Dark-field image of the as-cast sample. (b) Bright-field HRTEM image of as-cast sample. (c) 
Dark-field image of the deformed sample by HPT for two rotations. (d) Bright-field HRTEM image of the deformed sample by HPT for two 
rotations. (e) Dark-field HRTEM image of the deformed sample by HPT for 20 rotations. (f) Bright-field HRTEM image of the deformed sample 
by HPT for 20 rotations. Modified from [2], with the license “CC-BY 4.0” (https://creativecommons.org/licenses/by/4.0/).
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  Figure 4: (a) Differential scan calorimetry curves of as-cast and HPT-treated (rotation number N=2, 5, 10, 20) Zr55.7Ni10Al7Cu19Co8.3 samples. 
(b) Relaxation energy release prior to Tg of as-cast and HPT-treated Zr55.7Ni10Al7Cu19Co8.3 samples. Reprinted from [2], with the license “CC-BY 
4.0” (https://creativecommons.org/licenses/by/4.0/).

 

 

 

  Figure 5 (a) Nanoindentation hardness and (b) Young’s modulus distribution of as-cast and HPT-treated (rotation number N = 2, 5, 10, 20) 
Zr55.7Ni10Al7Cu19Co8.3 samples [22].

 

  

 Figure 6: Tensile stress–strain curves of Zr55.7Ni10Al7Cu19Co8.3 samples before and after the HPT process (rotation number N = 2, 5, 10, 20). 
Modified from [2], with the license “CC-BY 4.0” (https://creativecommons.org/licenses/by/4.0/).
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no plastic strain during the tensile test. However, after HPT 
for two rotations, the ductility of the Zr55.7Ni10Al7Cu19Co8.3 
nanoglass sample is improved significantly. Its tensile plastic 
strain reaches almost 1.0%, which is significantly improved in 
comparison with untreated monolithic metallic glasses. From 
the serrated plastic deformation plateau on the stress–strain 
curve, it might be deduced that more than one major shear 
band initiated during the tensile test. However, the plastic 
strain of the treated samples decreases again when the HPT 
increases to 5-20 rotations. As discussed above, the reason is 
the variation in free volume. An excessively large deformation 
degree might facilitate a temperature rise in the sample, 
leading to free volume annihilation in the structure.

The initiation and evolution of shear bands on the sample’s 
surfaces during tensile deformation were also observed by 
in situ SEM measurement. The images in Figure 7 exhibit the 
surfaces of the as-cast and HPT-treated nanoglass samples 
under yield stress loading conditions. Figure 7a shows that 
two major shear bands cut through the surface of the as-cast 
Zr55.7Ni10Al7Cu19Co8.3 sample, with a few shear bands on the 
side. The deformation is concentrated within the major shear 

bands. Unlike the compression process with restricted load, 
this shear band easily extends to a crack under tension, which 
leads to very rapid catastrophic fracture after yielding. The 
two-rotation HPT-treated Zr55.7Ni10Al7Cu19Co8.3 sample shows 
the best ductility. Multiple shear bands can be observed on 
the surface with an orientation perpendicular to the tension 
direction (Figure 7b), resulting in large plastic strain. Further 
increasing the HPT rotation number (5-20) reduced the 
number of shear bands (Figure 7c) because of the annihilation 
of free volume in the structure and the plasticity of the samples 
is reduced.

Finite element analysis of the tensile tests on nanoglass 
has been done by Mo Li et al. [30]. It shows that, in the 
heterogeneous structure, initial deformation started at the 
soft regions, continuing to be localized around their original 
location. When localized regions have finally developed, the 
deformation bands do not look smooth and straight, rather 
rugged and zigzag with many side bands. The localized 
deformation zones are spread more widely, resulting in 
improved plasticity [30]. This simulation is coincident with the 
experimental results as shown in Figure 7.

 
  

Figure 7: Shear bands on the surface of the Zr55.7Ni10Al7Cu19Co8.3 sample (a) as-cast, (b) N = 2, and (c) N = 20, under yielding load. Modified 
from [2], with the license “CC-BY 4.0” (https://creativecommons.org/licenses/by/4.0/).
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Figure 8 illustrates the SEM images for crack tips on 
two rotations of HPT-treated Zr64Ni10Al7Cu19 BMG and 
Zr55.7Ni10Al7Cu19Co8.3 nanoglass samples just before fracture. 
It is clear that on the treated Zr55.7Ni10Al7Cu19Co8.3 nanoglass, 
many shear bands branch and interact with each other at the 
crack tip (Figure 8b), which cannot be detected on the treated 
Zr64Ni10Al7Cu19 BMG (Figure 8a). In this treated nanoglass, the 
crack tips reached the HPT–introduced pre-existing shear 
bands during propagation, resulting in the formation of newly 
formed shear bands. The propagation of the newly formed 
shear bands is inhibited again by branching and intersection 
[29,31]. Thus, the localized plasticity is improved significantly 
[2].

Conclusions 

Nanoscale crystalline particles (about 1 vol%) and shear 
bands form in the nanoglass (Zr55.7Ni10Al7Cu19Co8.3) during HPT. 
The free volume in the structure is increased by two rotations of 
HPT. Nanoindentation analysis shows that the hardness of the 
outer region (500-2500 µm from the center) is increased about 
10% by HPT, indicating an increase in residual compressive 
stress. The localized tensile plasticity of the nanoglass is 
improved by two rotations of HPT treatments, and its tensile 
plastic strain reaches about 1%. The reason is the increased 
free volume and pre-existing shear bands introduced by the 
two rotations of HPT. During tensile deformation, multiple 
shear bands form on the tip of cracks; they branch and 
interact with each other, enhancing the ductility. With this 
improved property, the HPT treated nanoglass could have 
large application potential.
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