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Viable but Nonculturable Gastrointestinal 
Bacteria

Viable but nonculturable (VBNC) bacteria are deeply 
dormant phenotypic variants that are characterized by 
a loss of culturability in conventional culture media, yet 
retain some viability markers [1]. Thus, low metabolic 
activity, nutrient uptake, membrane integrity, and 
respiration are all detectable in these dormant cells. In 
1982, the VBNC state was first described for Escherichia 
coli and Vibrio cholerae [2]. Shortly afterwards, VBNC 
Salmonella enteriditis were found to regain culturability 
when placed under favourable conditions [3]. Since then, 
more than 100 bacterial species (including approximately 
30 gastrointestinal bacteria) and some fungi have been 
reported to enter the VBNC state (see Dong et al. [4] and 
Li et al. [5] for excellent reviews). Among them are many 
food-borne, toxin-producing bacteria, such as Aeromonas 
hydrophila, Bacillus cereus, Campylobacter jejuni, 
E. coli O157:H7, Lactobacillus acetotolerans, Listeria 
monocytogenes, S. enterica, Shigella flexneri, V. cholerae, 
but also probiotic bacteria, such as Bifidobacterium 
animalis, Bf. longum and Bf. lactis [6]. 

Characteristics of VBNC Bacteria

Bacteria enter the VBNC state in response to natural 
stresses. Stressful conditions that induce this form of 
dormancy in E. coli have been intensively studied, and 
include deprivation of essential nutrients, oxidative 
stress (H2O2), low temperature (4°C), high osmolarity 
and radiation (UV light, TiO2-mediated photocatalysis) 
(summarized in Ding et al. [7]) (Figure 1). For most 
bacteria, nutrient limitation and cold stress are the 
frequently reported factors that trigger the entry of bacteria 
into the VBNC state. These environmental stresses could 
potentially kill whole populations, unless at least some cells 
enter this dormant state. Strikingly, nutrient limitation is 
also the major initiator of endospore formation, which is 
itself the outcome of a complex regulatory programme. 
Endospores are metabolically dormant and resistant to 
deleterious environmental conditions, including extremes 
of temperature, desiccation and ionizing radiation [8]. 

The VBNC state can be regarded as a survival strategy 
for non-spore-forming bacteria [9]. This implies that 
the mechanism that mediates the switch to the VBNC 
phenotype is genetically determined [10]. However, an 
alternative view of the process has also been proposed by 
Desnues et al. [11], who suggested that harsh environmental 
conditions result in oxidative damage to cells, which 
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 Figure 1: Induction and resuscitation of viable but nonculturable (VBNC) bacteria. Schematic presentation of bacteria 
entering and leaving the VBNC state, including lists of factors that either induce the VBNC state or promote resuscitation. Colonies 
formed on agar plates indicate the culturability of bacteria.



                                                                                                                                                      
  Göing S, Jung K. Viable but Nonculturable Gastrointestinal Bacteria and Their Resuscitation. Arch Gastroenterol Res. 
2021; 2(2): 55-62.

Arch Gastroenterol Res. 2021
Volume 2, Issue 2 57

ultimately inhibits bacterial growth. In either case, bacteria 
must first sense changes in their environment, and then 
initiate a response which relies on an efficient regulatory 
network. Indeed, many genes and signalling pathways 
are known to be involved in activating the VBNC state in 
bacteria [4]. 

VBNC bacteria are viable, but they differ from culturable 
cells in several morphological, physiological and molecular 
features. They are usually smaller and rounded in shape, 
with a correspondingly increased surface-to-volume ratio 
(Figure 2) [12-14]. For example, in Campylobacter spp., 
the characteristic spiral shape in the exponential phase is 
transformed into a coccoid shape in the VBNC state [15]. 
These morphological changes are commonly found in 
VBNC cells; however, similar changes are also observed in 
non-VBNC cells that are exposed to stressful conditions, 
so changes in morphology alone cannot be used as the 
defining criterion of the VBNC state [16].

Other typical features include alterations in cell-wall and 
membrane composition. Importantly, VBNC bacteria are 
resistant to physical conditions and chemical agents that 
would be lethal to culturable bacteria, and are difficult 
to kill with antibiotics, partly due to their low levels of 
metabolism [4].

Conditions and Factors that Promote 
Resuscitation

VBNC cells can, nonetheless, resume cell division. 
The process of re-establishing culturability is termed 
resuscitation (Figure 1). Various factors that promote 
the restoration of culturability in gastrointestinal VBNC 
bacteria have been identified. For some species, simple 
reversion of the specific stress factors that induced the 
VBNC state triggers resuscitation. For example, an 
increase in temperature is sufficient for many species 
that enter the VBNC state on exposure to cold [17-19]. 

 
 

 

 
  Figure 2: Time-resolved resuscitation of single VBNC E. coli cells in microfluidic devices. VBNC cells of E. coli 

MG1655 (stored at 4°C for 120 days) were placed in a microfluidic chamber (volume 4.2 pL) and observed by phase-contrast 
microscopy. At time zero, the chamber was flushed with diluted tryptone-based medium supplemented with 10 mM pyruvate, and 
resuscitation was followed over time (scale bar 5 μm). The schematics in the second row illustrate the observed changes in cell 
shape, volume and cell division. (Figure from [47], adapted and modified). 
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The addition of chelators and osmoprotectants can also 
reverse VBNC states induced by toxic levels of metals and 
high osmolarity, respectively [20,21]. Supplementation 
with complex nutrients, such as soluble extracts of plant 
or animal tissues, following starvation has been shown to 
restore culturability of various enteric VBNC bacteria, such 
as Acrobacter butzleri, Citrobacter freundii, E. coli, E. 
faecalis, P. aeruginosa and S. enterica [22-27]. However, 
the metabolite(s) directly responsible for initiating the 
process of resuscitation remain unknown in many cases. 

Other gastrointestinal VBNC cells require specific 
biological stimuli to escape from the dormant state – for 
instance, signals emitted by the host or other bacteria. 
Resuscitation-promoting-factors (RPFs) are a family 
of proteins secreted by actively growing Actinobacteria 
such as Mycobacterium tuberculosis, but also S. enterica 
serovar Oranienburg [28,29]. RPFs play a distinctive role 
in the resuscitation of these species. Interestingly, these 
proteins show striking structural similarity to cell-wall-
hydrolyzing enzymes. Molecules involved in cell-to-cell 
communication, designated as autoinducers (AIs), have also 
been found to resuscitate some intestinal VBNC bacteria 
[30,31]. For example, addition of AIs from supernatants 
of culturable Salmonella cells were shown to enable VBNC 
Salmonella to revive; similarly, E. coli AIs can make VBNC 
cells of the same species culturable again [22,28]. Even an 
inter-species resuscitating effect of AIs on VBNC bacteria 
has been observed [32]. Several studies have demonstrated 
that host signals can confer culturability on some VBNC 
gastrointestinal bacteria. Thus, species such as C. jejuni, 
pathogenic and non-pathogenic E. coli, Edwardsiella 
tarda, Helicobacter pylori, L. monocytogenes, S. enterica, 
S. flexneri, V. cholerae and V. parahaemolyticus have 
been restored to the culturable state with the help of host 
signals [13,30,33-40]. Resuscitation was achieved either 
by the addition of eukaryotic cell extracts, co-culture with 
eukaryotic cells, incubation in fertilized eggs or passage 
through the host.

Furthermore, antioxidants such as catalase, superoxide 
dismutase or α-ketoglutarate can promote resuscitation by 
scavenging reactive oxygen species [22,41,42]. Moreover, 
several studies have described pyruvate as crucial for 
resuscitation [5,27,41,42]. Pyruvate is known to scavenge 
hydrogen peroxide [43] and the hydroxyl radical [44], 
and prevents lipid peroxidation [45]. Pyruvate and other 
α-ketoacids scavenge oxygen radicals by a non-enzymatic 
oxidative decarboxylation mechanism [41,46].

Resuscitation of VBNC E. coli cells can be 
activated by pyruvate uptake

In a recent study [47], we demonstrated that pyruvate is 
not only an antioxidant, but is avidly taken up by starved 

and cold-stressed E. coli VBNC cells, and promotes 
their return to a culturable state. Uptake of pyruvate 
under these conditions is mediated by the high-affinity 
transporter BtsT, whose expression is under the control 
of the pyruvate-sensing network BtsSR/YpdAB [48,49]. 
This pyruvate-sensing network is not only important for 
the homogenization of the physiological states within an E. 
coli population [50], but is essential for the resuscitation 
of VBNC cells. VBNC E. coli cells that lack this network 
are essentially unable to resuscitate in the presence of 
pyruvate, as confirmed by their inability to resume DNA 
replication and protein biosynthesis. The resuscitation of 
VBNC E. coli was monitored in a time-resolved manner in 
microfluidic devices (Figure 2). Remarkably, resuscitation 
of cells was accompanied by visible changes in cell 
volume within minutes after exposure to pyruvate – a 
phenomenon that needs to be explored in more detail. The 
accompanying proteomic study revealed that VBNC E. coli 
cells are characterized by a significantly increased copy 
number of the high-affinity pyruvate/H+ symporter BtsT. 
Consequently, wild-type VBNC cells were able to take up 
pyruvate within seconds of its provision. Several enzymes 
involved in pyruvate metabolism were also found to be 
strongly upregulated in the proteome of the VBNC cells, 
and we have suggested that pyruvate becomes the preferred 
carbon source in starving cells because – unlike glucose – 
it does not need to be activated by phosphorylation prior 
to uptake. 

The Relevance of VBNC cells in the 
Gastrointestinal Tract

Entry into the VBNC state enables enteric pathogens and 
non-pathogens to survive in adverse environments, but 
poses health risks in clinical settings, for the food industry 
and for water supplies, once such cells become culturable 
again [51,52]. 

Many pathogens, such as V. cholerae, V. vulnificus, 
C. jejuni or E. faecalis, not only enter the VBNC state 
and return to culturability, but retain or regain their 
pathogenicity once resuscitated [35,53-55]. In light of the 
fact that host signals can in principle promote resuscitation 
of enteric pathogens, the possibility must be considered 
that these bacteria can regain their pathogenicity in 
the human intestinal tract after having survived in a 
dormant – and effectively undetectable – VBNC state, 
and can thus represent an underestimated risk factor. For 
example, E. coli O157:H7, S. enterica, L. monocytogenes 
and P. aeruginosa can all survive standard disinfection 
treatments in the VBNC state in food or drinks [26,56-
58]. Once they access to the host, these pathogens could 
be resuscitated, initiate their virulence programs and 
cause infection. Furthermore, due to their low metabolic 
activity, VBNC cells are effectively resistant to antibiotics 
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[59]. Hence, VBNC cells might, for instance, account for 
reinfections with H. pylori or recurring urinary tract 
infections by uropathogenic E. coli [1,60]. 

On the other hand, the non-culturability of some 
gastrointestinal bacteria is certainly related to lack of 
knowledge of the specific molecular triggers that initiate 
the resuscitation process [61]. This is an important 
consideration in the context of fecal transplantations (also 
known as bacteriotherapy), i.e., the transfer of stool from 
a healthy donor into the gastrointestinal tract of patients 
suffering from - for example - Clostridioides difficile-
induced colitis. The transfer of the bacteria requires 
a period during which the cells are outside of a host. 
Exposure to lower temperature and/or oxygen might be 
sufficient to induce the VBNC state in some species, and 
it is unclear whether they resume growth in the new host.

Conclusion

In a recent study, we have shown that pyruvate is 
crucial for VBNC E. coli cells to return to the culturable 
state. Pyruvate is one of the main factors involved in the 
resuscitation of VBNC bacteria. It should be emphasised 
here that many bacteria secrete pyruvate under conditions 
of overflow metabolism [48]. In addition, mouse and 
human cells also secrete pyruvate as an antioxidant to 
neutralise reactive oxygen species [43], and cancer cells 
in particular release pyruvate to adapt to hypoxia [62]. 
Thus, the secretion of pyruvate may be of more general 
significance for the gut microbiota, and thus for human 
health, than previously thought. In summary, it is of 
great importance to gain a broader and more systematic 
understanding of the induction and resuscitation of VBNC 
bacteria in the gastrointestinal tract.
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