

Archives of Pharmacology and Therapeutics

Commentary

Beta-Sitosterol: As Immunostimulant, Antioxidant and Inhibitor of SARS-CoV-2 Spike Glycoprotein

Sharuk L. Khan*, Falak A. Siddiqui

New Montfort Institute of Pharmacy, Ashti, Wardha, Maharashtra, India-442202

*Correspondence should be addressed to Sharuk Khan; sharique.4u4@gmail.com

Received date: July 31, 2020, Accepted date: August 24, 2020

Copyright: © 2020 Khan SL, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

As an extension to our recently published research work in *Asian Journal of Pharmaceutical and Clinical Research*, entitled "B-Sitosterol: Isolation from *Muntingia Calabura* Linn. Bark Extract, Structural Elucidation, and Molecular Docking Studies as Potential Inhibitor of SARS-CoV-2 M^{pro} (COVID-19)", we have investigated the role of β -sitosterol as immunostimulant, antioxidant and inhibitory potential against Receptor Binding Domain (RBD) of SARS-CoV-2 Spike Glycoprotein with the aid of molecular docking. There are many studies which reveals the antioxidant and immune boosting role of β -sitosterol especially in viral infection including pneumoniae. This commentary emphasis on further potential of β -sitosterol in treatment of COVID-19 through molecular docking studies. We have targeted RBD of spike glycoprotein and performed molecular docking studies of β -sitosterol to find out its inhibitory potential of SARS-CoV-2. β -sitosterol have showed binding affinity - 7.8 kcal/mol with 0 RMSD lower and upper bound. It formed one hydrogen bond with Ala-B:419 with bond length of 2.16A°. β -sitosterol has formed five alkyl bonds with Pro-C:384 (5.0A°, 4.66A°, 5.23A°, 4.27A°) and with Lys-C:378 (4.66A°). From present commentary, we have concluded that β -sitosterol can be used to enhance immunity against the SARS-CoV-2 infection as well as to restrict the viral invasion into the host cell through angiotensin converting enzyme-2 (ACE-2) by inhibiting spike glycoprotein. If we can increase the dietary intake of β -sitosterol and other phytosterols it can modulate the immunity which is todays need to face COVID-19.

Keywords: β-sitosterol, SARS-CoV-2 spike glycoprotein, Molecular docking, 6VSB

Introduction

This article is an extension to our recently published article in Asian Journal of Pharmaceutical and Clinical Research, entitled "B-Sitosterol: Isolation from Muntingia Calabura Linn. Bark Extract, Structural Elucidation, and Molecular Docking Studies as Potential Inhibitor of SARS-CoV-2 M^{pro} (COVID-19)"[1]. The article describes detailed procedure for the isolation (by Column Chromatography) and structural characterization (by FTIR, UV-Visible Spectroscopy and HPTLC) of β -sitosterol from Muntingia Calabura bark. The \beta-sitosterol was docked on SARS-CoV-2 Mpro to study the binding affinity (kcal/mol) in comparison with favipiravir. It has been found that favipiravir has a less binding affinity, i.e. 5.7 kcal/mol than β-sitosterol which has 6.9 kcal/mol. The number of hydrogen bonds formed by the favipiravir is much more, i.e., 4 than β-sitosterol which formed only 01 hydrogen bond with SARS-CoV-2 Mpro.

As an extension to this published research work, we have investigated the role of β -sitosterol as immunostimulant, antioxidant and inhibitory potential against receptor binding domain (RBD) of SARS-CoV-2 Spike Glycoprotein with the aid of molecular docking. There are many studies which reveals the antioxidant and immune boosting role of β -sitosterol especially in viral infection including pneumoniae. This commentary emphasized on further potential of β -sitosterol in treatment of COVID-19 through molecular docking studies.

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a novel, zoonotic, positive-sense [2], single-stranded RNA beta-coronavirus [3] (subgenus *Sarbecovirus*, sub-family *Orthocoronaviridae*) [4]. The disease caused due to SARS-CoV-2 is termed as COVID-19 [5]. Almost every country of the world is now affected by SARS-CoV-2 infection. The World Health Organization (WHO) declared it a Public Health

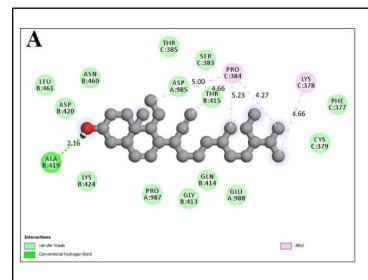
Emergency of International Concern on January 30, 2020, and on February 28, it upraised the worldwide threat of COVID-19 to the utmost level [6]. A global pandemic was declared on March 11, 2020 [7]. The N, E, M, and S proteins are the four structural proteins encoded by SARS-CoV-2 [8]. This S protein of SARS-CoV-2 i.e. SARS-CoV-2 spike glycoprotein causes invasion to the host cell after binding with angiotensin converting enzyme-2 (ACE-2) [9]. The SARS-CoV-2 spike glycoprotein is cleaved into two subunits during entry [10]. The S1 subunit contains a receptor binding domain (RBD) and attaches to ACE-2 [11]. The S2 subunit then facilitates membrane fusion [12-14]. Therefore, we have targeted RBD of spike glycoprotein and performed molecular docking studies of β -sitosterol to find out its inhibitory potential of SARS-CoV-2.

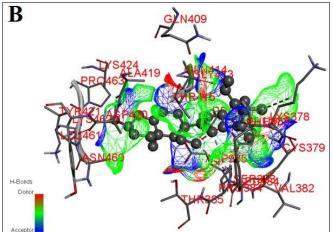
β-sitosterol as Immunostimulant, as Antiviral and as Antioxidant

Cheng et al. investigated the effects of dietary β -sitosterol at different levels on serum lipid levels, immune function, oxidative status, and intestinal morphology in broilers. They have concluded that dietary β-sitosterol supplementation could regulate serum cholesterol level, promote immune function, and improve intestinal oxidative status and morphology in broilers [15]. Fraile et al. reported that β -sitosterol can be considered an immunomodulator in pigs [16]. Bouic and Lamprecht reported that this phytosterol complex seems to target specific T-helper lymphocytes, the Th1 and Th2 cells, helping normalize their functioning and resulting in improved T-lymphocyte and natural killer cell activity. The re-establishment of these immune parameters may be of help in numerous disease processes relating to chronic immune-mediated abnormalities, including chronic viral infections, tuberculosis, rheumatoid arthritis, allergies, cancer, and autoimmune diseases [17]. Bouic et al. concluded that phytosterols could be used to prevent the subtle immunosuppression associated with excessive physical stress [18]. There are many studies which have reported the immunostimulant activity of the phytosterols [19-24].

Li et al. reported that β -sitosterol is a candidate for the development of anti-virulence agents against pathogens that rely on cholesterol-dependent toxins for successful infections [25]. Zhou et al. reported that β -sitosterol blocks the immune response mediated by RIG-I signaling and deleterious IFN production, providing a potential benefit for the treatment of influenza [26]. Parvez et. al. reported the antioxidative and hepatoprotective efficacy of of G. senegalensis leaves extract. HPTLC analysis of β -amyrin, β -sitosterol, lupeol and ursolic acid strongly supported the anti-HBV efficacy of GSLE via abating the cellular oxidative stress molecules [27]. There are many studies that have reported the antioxidant activity of β -sitosterol [27-34].

Molecular Docking Studies of β -sitosterol with RBD of SARS-CoV-2 Spike Glycoprotein


Autodock vina 1.1.2 in PyRx-Virtual Screening Tool 0.8 were used to perform the docking studies [35]. The active amino acid residues in the protein were identified and noted using BIOVIA Discovery Studio Visualizer (version-19.1.0.18287) [36]. The complete docking procedure along with ligand preparation and target preparation have been performed as described in the reference article [1]. The recently elucidated structure pre-fusion 2019-nCoV (SARS-CoV-2) spike glycoprotein with a single receptor-binding domain up was obtained from the RCSB Protein Data Bank (PDB ID: 6VSB) which was released on 26 February 2020 (https://www.rcsb. org/structure/6VSB) [37]. RBD from SARS-CoV-2 spike glycoprotein was identified from the official website of Protein Data Bank in Europe (EMBL-EBI) (https:// www.ebi.ac.uk/pdbe/entry/pdb/6vsb). There were three sequence domains in the 6VSB crystal structure; Spike receptor binding domain; Spike glycoprotein N-terminal domain; Coronavirus spike glycoprotein S1, C-terminal, along with three chains in the structure (Chain A, B, C). For molecular docking simulation, the three-dimensional grid box (size_x = 76.1623A°; size_y = 84.3011A°; size_z = 62.4413A°) was designed (to define area for interactions) around the RBD (to occupy) using Autodock tool 1.5.6 with exhaustiveness value of 8 [35,36].


Results and Discussion

RBD comprises of amino acid residues from chain A. chain B, and chain C as well, therefore, the most potent inhibitor will be the one which interacts with amino acid residues from all the chains. β-sitosterol has showed a binding affinity of 7.8 kcal/mol with o RMSD lower and upper bound. The 2D- and 3D-Docking poses of the β-sitosterol represented in figure 1A & 1B respectively. It formed one hydrogen bond with Ala-B:419 with bond length of 2.16 A° . β -sitosterol has formed five alkyl bonds with Pro-C:384 (5.0A°, 4.66A°, 5.23A°, 4.27A°) and with Lys-C:378 (4.66A°). It also shows van der Waals attraction with Thr-C:385, Ser-C:383, Asp-A:985, Thr-B:415, Phe-C:377, Cys-C:379, Glu-A:988, Gln-B:414, Gly-B:413, Pro-A:987, Lys-B:424, Asp-B:420, Leu-B:461, Asn-B:460. As β-sitosterol is interacting with amino acids from every chain (A, B, C), it indicates that it is a potent inhibitor of RBD of SARS-CoV-2 spike glycoprotein. The interacting residues, bond length, and binding affinity are represented in table 1.

Conclusion

Currently, there is no specific treatment available for SARS-CoV-2 infection. Use of immunostimulants, antivirals, and antioxidants can help to reduce the risk of COVID-19. Literature supports the immunostimulant, antiviral, and antioxidant activity of the β -sitosterol.

Figure 1: **A)** 2D-Docking Pose **B)** 3D-Docking Pose of β -sitosterol with RBD of SARS-CoV-2 Spike Glycoprotein.

Name of Molecule	Binding Affinity (kcal/mol)	Types of Bond	Active Amino Residues with Bond Length (A°)
		Hydrogen Bond	Ala-B:419 (2.16A°)
		Alkyl Bond	Pro-C:384 (5.0A°, 4.66A°, 5.23A°, 4.27A°), Lys-C:378 (4.66A°)
β-sitosterol	-7.8	Van Der Waals	Thr-C:385, Ser-C:383, Asp-A:985, Thr-B:415, Phe-C:377, Cys-C:379, Glu-A:988, Gln-B:414, Gly-B:413, Pro-A:987, Lys-B:424, Asp-B:420, Leu-B:461, Asn-B:460

Table 1: Binding Affinity (kcal/mol), types of bond and active amino acid residues with bond length (A°).

Also, molecular docking studies have found very good binding affinity of β -sitosterol with RBD of SARS-CoV-2 spike glycoprotein which can restrict the viral invasion into the host cell. It has formed one hydrogen bond with Ala-B:419, which is good for better inhibition. From present commentary, we have concluded that β -sitosterol can be used to enhance immunity against the SARS-CoV-2 infection as well as to restrict the viral invasion into the host cell through angiotensin converting enzyme-2 (ACE-2) by inhibiting spike glycoprotein. If we can increase the dietary intake of β -sitosterol and other phytosterols it can modulate the immunity which is todays need to face COVID-19.

Conflict of Interest

The authors have no conflicts of interest.

References

1. Chaudhari RN, Khan SL, Chaudhary RS, Jain SP, Sidduqui FA. B-SITOSTEROL: ISOLATION FROM

MUNTINGIA CALABURA LINN BARK EXTRACT, STRUCTURAL ELUCIDATION AND MOLECULAR DOCKING STUDIES AS POTENTIAL INHIBITOR OF SARS-CoV-2 M^{pro} (COVID-19). Asian Journal of Pharmaceutical and Clinical Research. 2020 May;13(5):204-9.

- 2. Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature. 2020 May;581(7807):215-20.
- 3. Wang Q, Zhang Y, Wu L, Niu S, Song C, Zhang Z, et al. Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2. Cell. 2020 Apr 9;181(4):894–904.e9.
- 4. Jin Y, Yang H, Ji W, Wu W, Chen S, Zhang W, et al. Virology, epidemiology, pathogenesis, and control of covid-19. Viruses. 2020 Apr;12(4):372.
- 5. Singhal T. A review of coronavirus disease-2019 (COVID-19). The Indian Journal of Pediatrics. 2020 Apr;87(4):281-286.

- 6. Guo YR, Cao QD, Hong ZS, Tan YY, Chen SD, Jin HJ, et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak—an update on the status. Military Medical Research. 2020 Mar 13;7(1):11.
- 7. Kumar D, Malviya R, Sharma PK. Corona virus: a review of COVID-19. Eurasian Journal of Medicine and Oncology. 2020;4:8-25.
- 8. Bourgonje AR, Abdulle AE, Timens W, Hillebrands JL, Navis GJ, Gordijn SJ, et al. Angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 and the pathophysiology of coronavirus disease 2019 (COVID-19). Vol. 251, Journal of Pathology. 2020 May 17;251(3):228-48.
- 9. Musarrat F, Chouljenko V, Dahal A, Nabi R, Chouljenko T, Jois SD, et al. The anti-HIV drug nelfinavir mesylate (Viracept) is a potent inhibitor of cell fusion caused by the SARSCoV-2 spike (S) glycoprotein warranting further evaluation as an antiviral against COVID-19 infections. Journal of Medical Virology. 2020 May 6.
- 10. Xia S, Liu M, Wang C, Xu W, Lan Q, Feng S, et al. Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell research. 2020 Apr;30(4):343-55.
- 11. Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell. 2020 Mar 9;181(2):281–292.e6.
- 12. Watanabe Y, Allen JD, Wrapp D, McLellan JS, Crispin M. Site-specific glycan analysis of the SARS-CoV-2 spike. Science. 2020 May 04;369(6501):330-3.
- 13. Simmons G, Reeves JD, Rennekamp AJ, Amberg SM, Piefer AJ, Bates P. Characterization of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) spike glycoprotein-mediated viral entry. Proceedings of the National Academy of Sciences. 2004 Mar 23;101(12):4240-5.
- 14. Pinto D, Park YJ, Beltramello M, Walls AC, Tortorici MA, Bianchi S, et al. Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Nature. 2020 May;583(7815):290-5.
- 15. Cheng Y, Chen Y, Li J, Qu H, Zhao Y, Wen C, et al. Dietary β -sitosterol regulates serum lipid level and improves immune function, antioxidant status, and intestinal morphology in broilers. Poultry Science. 2020 Mar 1;99(3):1400-8.

- 16. Fraile L, Crisci E, Córdoba L, Navarro MA, Osada J, Montoya M. Immunomodulatory properties of betasitosterol in pig immune responses. International Immunopharmacology. 2012 Jul 1;13(3):316-21.
- 17. Bouic PJD, Lamprecht JH. Plant sterols and sterolins: A review of their immune-modulating properties. Altern Med Rev. 1999 Jun 1;4(3):170-7.
- 18. Bouic PJD, Clark A, Lamprecht J, Freestone M, Pool EJ, Liebenberg RW, et al. The effects of B-sitosterol (BSS) and B-sitosterol glucoside (BSSG) mixture on selected immune parameters of marathon runners: Inhibition of post marathon immune suppression and inflammation. International Journal of Sports Medicine. 1999 May;20(04):258-62.
- 19. Park YJ, Bang IJ, Jeong MH, Kim HR, Lee DE, Kwak JH, et al. Effects of β -Sitosterol from Corn Silk on TGF- β 1-Induced Epithelial-Mesenchymal Transition in Lung Alveolar Epithelial Cells. Journal of agricultural and food chemistry. 2019 Aug 2;67(35):9789-95.
- 20. Boukes GJ, Van de Venter M. In vitro modulation of the innate immune response and phagocytosis by three Hypoxis spp. and their phytosterols. South African Journal of Botany. 2016 Jan 1;102:120-6.
- 21. Liu R, Hao D, Xu W, Li J, Li X, Shen D, et al. β -Sitosterol modulates macrophage polarization and attenuates rheumatoid inflammation in mice. Pharmaceutical Biology. 2019 Jan 1;57(1):161-8.
- 22. Ju YH, Clausen LM, Allred KF, Almada AL, Helferich WG. β -Sitosterol, β -Sitosterol Glucoside, and a Mixture of β -Sitosterol and β -Sitosterol Glucoside Modulate the Growth of Estrogen-Responsive Breast Cancer Cells in Vitro and in Ovariectomized Athymic Mice. The Journal of Nutrition. 2004 May;134(5):1145-51.
- 23. Bouic PJ. Sterols and sterolins: new drugs for the immune system?. Drug Discovery Today. 2002 Jul 1;7(14):775-8.
- 24. Bouic PJD. The role of phytosterols and phytosterolins in immune modulation: A review of the past 10 years. Current Opinion in Clinical Nutrition & Metabolic Care. 2001 Nov 1;4(6):471-5.
- 25. Li H, Zhao X, Wang J, Dong Y, Meng S, Li R, et al. β -sitosterol interacts with pneumolysin to prevent Streptococcus pneumoniae infection. Scientific Reports. 2015 Dec 3;5(1):1-9.
- 26. Zhou BX, Li J, Liang XL, Pan XP, Hao YB, Xie PF, et al. β -sitosterol ameliorates influenza A virus-induced proinflammatory response and acute lung injury in mice

- by disrupting the cross-talk between RIG-I and IFN/STAT signaling. Acta Pharmacologica Sinica. 2020 Jun 5:1-9.
- 27. Parvez MK, Alam P, Arbab AH, Al-Dosari MS, Alhowiriny TA, Alqasoumi SI. Analysis of antioxidative and antiviral biomarkers β -amyrin, β -sitosterol, lupeol, ursolic acid in Guiera senegalensis leaves extract by validated HPTLC methods. Saudi Pharm J. 2018;26(5):685–93.
- 28. Gupta R, Sharma AK, Dobhal MP, Sharma MC, Gupta RS. Antidiabetic and antioxidant potential of β -sitosterol in streptozotocin-induced experimental hyperglycemia. Journal of Diabetes. 2011 Mar;3(1):29-37.
- 29. Vivancos M, Moreno JJ. β -Sitosterol modulates antioxidant enzyme response in RAW 264.7 macrophages. Free Radical Biology and Medicine. 2005 Jul 1;39(1):91-7.
- 30. Baskar AA, Al Numair KS, Gabriel Paulraj M, Alsaif MA, Muamar MA, Ignacimuthu S. β -sitosterol prevents lipid peroxidation and improves antioxidant status and histoarchitecture in rats with 1, 2-dimethylhydrazine-induced colon cancer. Journal of Medicinal Food. 2012 Apr 1;15(4):335-43.
- 31. Ambavade SD, Misar AV, Ambavade PD. Pharmacological, nutritional, and analytical aspects of β -sitosterol: A review. Oriental Pharmacy and Experimental Medicine. 2014 Sep 1;14(3):193-211.

- 32. Loizou S, Lekakis I, Chrousos GP, Moutsatsou P. β -Sitosterol exhibits anti-inflammatory activity in human aortic endothelial cells. Molecular Nutrition & Food Research. 2010 Apr;54(4):551-8.
- 33. López-Cervantes J, Sánchez-Machado DI, Cruz-Flores P, Mariscal-Domínguez MF, Servín de la Mora-López G, Campas-Baypoli ON. Antioxidant capacity, proximate composition, and lipid constituents of Aloe vera flowers. Journal of Applied Research on Medicinal and Aromatic Plants. 2018 Sep 1;10:93-8.
- 34. Burda S, Oleszek W. Antioxidant and antiradical activities of flavonoids. Journal of Agricultural and food Chemistry. 2001 Jun 18;49(6):2774-9.
- 35. Dallakyan S, Olson AJ. Small-molecule library screening by docking with PyRx. Methods in Molecular Biology. 2015;1263(1263):243-50.
- 36. Dassault Systèmes. Dassault Systèmes BIOVIA, Discovery Studio Modeling Environment. 2017; Available at: https://www.3dsbiovia.com/about/citations-references/
- 37. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020 Mar 13;367(6483):1260-3.