Ectodomain Shedding May Play a Pivotal Role in Disease Severity in COVID-19

Rui Yamaguchi, Yasuo Yamaguchi
Graduate School of Medical Science, Kumamoto Health Science University, Kitaku Izumi-machi 325 Kumamoto 861-5598, Japan
*Correspondence should be addressed to Yasuo Yamaguchi; yamaguti@kumamoto-hsu.ac.jp

Received date: April 16, 2021, Accepted date: May 21, 2021

Copyright: © 2021 Yamaguchi R, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Ectodomain shedding mediated by a disintegrin and metalloprotease 10/17 (ADAM10/17) modulates the function of immune effector cells and may be involved in the novel coronavirus disease COVID-19. Toll-like receptor 7/8 (TLR7/8) recognizes single-strand RNA from viruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, the virus that causes COVID-19) during the innate immune response [1], and TLR7/8 agonist activates nicotinamide adenine dinucleotide phosphate (NADPH) oxidase to generate reactive oxygen species (ROS) [2]. ADAM10/7 was found to mediate ectodomain shedding to modulate immune responses [3] and to be activated by ROS [4]. These findings suggest that SARS-CoV-2 contributes to and induces ectodomain shedding, which may be associated with disease severity. In patients with COVID-19, studies found a higher blood concentration of the chemokine fractalkine [5]. Cell membrane-bound angiotensin-converting enzyme 2 (ACE2) has been identified as a binding site and entry receptor for the spike protein of SARS-CoV-2. After the

Ectodomain shedding mediated by a disintegrin and metalloprotease 10/17 (ADAM10/17) modulates the function of immune effector cells and may be involved in the novel coronavirus disease COVID-19. Toll-like receptor 7/8 (TLR7/8) recognizes single-strand RNA from viruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, the virus that causes COVID-19) during the innate immune response [1], and TLR7/8 agonist activates nicotinamide adenine dinucleotide phosphate (NADPH) oxidase to generate reactive oxygen species (ROS) [2]. ADAM10/7 was found to mediate ectodomain shedding to modulate immune responses [3] and to be activated by ROS [4]. These findings suggest that SARS-CoV-2 contributes to and induces ectodomain shedding, which may be associated with disease severity. In patients with COVID-19, studies found a higher blood concentration of the chemokine fractalkine [5]. Cell membrane-bound angiotensin-converting enzyme 2 (ACE2) has been identified as a binding site and entry receptor for the spike protein of SARS-CoV-2. After the

Figure 1: The role of Angiotensin-converting enzyme 2 (ACE2) degrades angiotensin II to angiotensin (1-7). Angiotensin II binds to angiotensin II type 1 and 2 receptors (AT1 and AT2), leading to vasoconstriction, but angiotensin (1-7) binds to the MAS receptor, leading to vasodilation. Furthermore, the angiotensin II/AT1/AT2 axis enhances cytokine production, whereas the angiotensin (1-7)/MAS receptor axis reduces cytokine secretion. The G-protein-coupled receptor MAS acts as an antagonist of AT1. Taken together, these mechanisms show how ACE2 regulates overproduction of cytokines (the so-called cytokine storm) through AT/angiotensin II pathway signaling.

Abbreviations: ACE: Angiotensin Converting Enzyme; AT1: Angiotensin II Type 1 receptor; AT2: Angiotensin II Type 2 receptor; COVID-19: Coronavirus Disease 2019; MAS receptor: MAS proto-oncogene -related G-protein-coupled receptor.
virus binds to ACE2, ACE2 is internalized; ACE2 shedding also is mediated and enhanced by ADAM10/17 [6,7]. ACE2 deficiency increases expression of fractalkine [5,8]. ACE2 catalyzes and degrades angiotensin II, leading to the production of angiotensin 1-7, which binds to the angiotensin 1-7 (MAS) receptor and acts as a vasodilator (Figure 1). Indeed, binding of SARS-CoV-2 to ACE2 leads to ACE2 deficiency, which potentiates angiotensin II activity. Excess angiotensin II then activates NF-κB through the angiotensin type 1 receptor (AT1) and type 2 receptor (AT2) signaling pathway to enhance cytokine production (Figure 2). This mechanism explains how COVID-19 induces a cytokine storm [9]. Most importantly, angiotensin II activates NADPH oxidase to generate ROS [10], ie, superoxide (O$_2^-$) and hydrogen peroxide (H$_2$O$_2$). In cells stimulated with interleukin-1β (IL-1β), the angiotensin II/AT1 and AT2 axis augments expression of inducible nitric oxide synthase (iNOS) to generate nitric oxide (NO) [11]; NO reacts with the peroxidase domain of the enzyme dual oxidase 2, which has both a peroxidase domain and an NADPH oxidase domain, to produce the strong biological oxidant agent peroxynitrite (ONOO$^-$). Both H$_2$O$_2$ and ONOO$^-$ contribute to enhanced activation of ectodomain shedding by ADAM10/17. The fractalkine receptor CX3CR1 is highly expressed by macrophages, and soluble fractalkine shed from cells because of cleavage by ADAM10/17 activates macrophages to cause a hyperinflammatory response. SARS-CoV-2 also induces cytotoxic CD8$^+$ T cells to produce perforin and granzyme B, which show aberrant hyperactivation and target cell killing [12]. CX3CR1 is expressed by these cytotoxic CD8$^+$ T cells, and fractalkine acts as a chemoattractant for them. Taken together, these findings indicate that ectodomain shedding may be closely associated with severity of COVID-19.

Figure 2: Possible mechanism by which severe acute respiratory syndrome coronavirus 2 causes cytokine storm through binding to angiotensin-converting enzyme 2. Severe acute respiratory syndrome coronavirus 2, the virus that causes coronavirus disease 2019, binds to angiotensin-converting enzyme 2. As a result, most angiotensin II is not degraded; the excess angiotensin II stimulates angiotensin type 1 and 2 receptors (AT1 and AT2, respectively), leading to a cytokine storm. The angiotensin II/AT1/AT2 axis reacts with dual oxidase 2 to activate nicotinamide adenine dinucleotide phosphate oxidase to induce superoxide (O$_2^-$) and generate hydrogen peroxide (H$_2$O$_2$). Most importantly, angiotensin II activates nitric oxide synthase and induces nitric oxide production. Peroxidase reacts with NO to generate peroxynitrite (ONOO$^-$). Together, H$_2$O$_2$ and ONOO$^-$ induce activation of a disintegrin and metalloprotease 10/17 (ADAM10/17) for ectodomain shedding.

Abbreviations: ACE: Angiotensin Converting Enzyme; ADAM: A Disintegrin and Metalloproteinase domain-containing protein; COVID-19: Coronavirus Disease 2019; AT1: Angiotensin II Type 1 receptor; DUOX: Dual Oxidase; NADPH: Nicotinamide Adenine Dinucleotide Phosphate; NOS: Nitric Oxide Synthase; NO: Nitric Oxide
References

